DeconvNet : Learning Deconvolution Network for Semantic Segmentation

Overview

DeconvNet: Learning Deconvolution Network for Semantic Segmentation

Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH

Acknowledgements: Thanks to Yangqing Jia and the BVLC team for creating Caffe.

Introduction

DeconvNet is state-of-the-art semantic segmentation system that combines bottom-up region proposals with multi-layer decovolution network.

Detailed description of the system will be provided by our technical report [arXiv tech report] http://arxiv.org/abs/1505.04366

Citation

If you're using this code in a publication, please cite our papers.

@article{noh2015learning,
  title={Learning Deconvolution Network for Semantic Segmentation},
  author={Noh, Hyeonwoo and Hong, Seunghoon and Han, Bohyung},
  journal={arXiv preprint arXiv:1505.04366},
  year={2015}
}

Pre-trained Model

If you need model definition and pre-trained model only, you can download them from following location: 0. caffe for DeconvNet: https://github.com/HyeonwooNoh/caffe 0. DeconvNet model definition: http://cvlab.postech.ac.kr/research/deconvnet/model/DeconvNet/DeconvNet_inference_deploy.prototxt 0. Pre-trained DeconvNet weight: http://cvlab.postech.ac.kr/research/deconvnet/model/DeconvNet/DeconvNet_trainval_inference.caffemodel

Licence

This software is being made available for research purpose only. Check LICENSE file for details.

System Requirements

This software is tested on Ubuntu 14.04 LTS (64bit).

Prerequisites 0. MATLAB (tested with 2014b on 64-bit Linux) 0. prerequisites for caffe(http://caffe.berkeleyvision.org/installation.html#prequequisites)

Installing DeconvNet

By running "setup.sh" you can download all the necessary file for training and inference include: 0. caffe: you need modified version of caffe which support DeconvNet - https://github.com/HyeonwooNoh/caffe.git 0. data: data used for training stage 1 and 2 0. model: caffemodel of trained DeconvNet and other caffemodels required for training

Training DeconvNet

Training scripts are included in ./training/ directory

To train DeconvNet you can simply run following scripts in order: 0. 001_start_train.sh : script for first stage training 0. 002_start_train.sh : script for second stage training 0. 003_start_make_bn_layer_testable : script converting trained DeconvNet with bn layer to inference mode

Inference EDeconvNet+CRF

Run run_demo.m to reproduce EDeconvNet+CRF results on VOC2012 test data.

This script will generated EDeconvNet+CRF results through following steps: 0. run FCN-8s and cache the score [cache_FCN8s_results.m] 0. generate DeconvNet score and apply ensemble with FCN-8s score, post processing with densecrf [generate_EDeconvNet_CRF_results.m]

EDeconvNet+CRF obtains 72.5 mean I/U on PASCAL VOC 2012 Test

External dependencies [can be downloaded by running "setup.sh" script] 0. FCN-8s model and weight file [https://github.com/BVLC/caffe/wiki/Model-Zoo] 0. densecrf with matlab wrapper [https://github.com/johannesu/meanfield-matlab.git] 0. cached proposal bounding boxes extracted with edgebox object proposal [https://github.com/pdollar/edges]

Owner
Hyeonwoo Noh
Hyeonwoo Noh
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022