Simulation code and tutorial for BBHnet training data

Overview

Simulation Dataset for BBHnet

NOTE: OLD README, UPDATE IN PROGRESS

We generate simulation dataset to train BBHnet, our deep learning framework for detection of compact binary coalescene (CBC) gravitational-wave (GW) signals .

Example

To generate a noise dataset, simply run generateRealNoise.py:

python generateRealNoise.py -t0 1186729980 -t1 1186734086 -t0-psd 1186729980 -t1-psd 1186734086
    -fs 1024 -fmin 20 -o test_noise.h5

To also add CBC signals, enable the flag -S and add the prior distribution file in Bilby format with -p

python generateRealNoise.py -t0 1186729980 -t1 1186734086 -t0-psd 1186729980 -t1-psd 1186734086
    -fs 1024 -fmin 20 -S -p config/priors/nonspin_BBH.prior -o test_signal.h5

A full list of generateRealNoise.py arguments can be found below:

usage: generateRealNoise.py [-h] -t0 FRAME_START -t1 FRAME_STOP -t0-psd FRAME_START_PSD -t1-psd FRAME_STOP_PSD -o OUTFILE [-S]
                            [-fs SAMPLE_RATE] [-fmin HIGH_PASS] [-T SAMPLE_DURATION] [-dt TIME_STEP] [-p PRIOR_FILE]
                            [--correlation-shift CORRELATION_SHIFT] [--min-trigger MIN_TRIGGER] [--max-trigger MAX_TRIGGER]
                            [-s SEED]

optional arguments:
  -h, --help            show this help message and exit
  -t0 FRAME_START, --frame-start FRAME_START
                        starting GPS time of strain
  -t1 FRAME_STOP, --frame-stop FRAME_STOP
                        stopping GPS time of strain
  -t0-psd FRAME_START_PSD, --frame-start-psd FRAME_START_PSD
                        starting GPS time of strain for PSD estimation
  -t1-psd FRAME_STOP_PSD, --frame-stop-psd FRAME_STOP_PSD
                        stopping GPS time of strain for PSD estimation
  -o OUTFILE, --outfile OUTFILE
                        path to write output file in HDF5 format
  -S, --signal          Enable to add GW signal on top of background noise
  -fs SAMPLE_RATE, --sample-rate SAMPLE_RATE
                        sampling rate of strain
  -fmin HIGH_PASS, --high-pass HIGH_PASS
                        frequency of highpass filter
  -T SAMPLE_DURATION, --sample-duration SAMPLE_DURATION
                        duration in seconds of each sample
  -dt TIME_STEP, --time-step TIME_STEP
                        time step size in seconds between consecutive samples
  -p PRIOR_FILE, --prior-file PRIOR_FILE
                        path to prior config file. Required for signal simulation
  --correlation-shift CORRELATION_SHIFT
                        if given, also compute the correlation with given shift value
  --min-trigger MIN_TRIGGER
                        mininum trigger time w.r.t to sample. must be within [0, sample_duration]
  --max-trigger MAX_TRIGGER
                        maximum trigger time w.r.t to sample. must be within [0, sample_duration]
  -s SEED, --seed SEED  random seed for reproducibility

4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022