Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Overview

Semi-supervised-learning-for-medical-image-segmentation.

  • Recently, semi-supervised image segmentation has become a hot topic in medical image computing, unfortunately, there are only a few open-source codes and datasets, since the privacy policy and others. For easy evaluation and fair comparison, we are trying to build a semi-supervised medical image segmentation benchmark to boost the semi-supervised learning research in the medical image computing community. If you are interested, you can push your implementations or ideas to this repository at any time.

  • This project was originally developed for our previous works (DTC and URPC), if you find it's useful for your research, please cite the followings:

      @InProceedings{luo2021urpc,
      author={Luo, Xiangde and Liao, Wenjun and Chen, Jieneng and Song, Tao and Chen, Yinan and Zhang, Shichuan and Chen, Nianyong and Wang, Guotai and Zhang, Shaoting},
      title={Efficient Semi-supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency},
      booktitle={Medical Image Computing and Computer Assisted Intervention -- MICCAI 2021},
      year={2021},
      pages={318--329}
      }
    
      @article{luo2021semi,
        title={Semi-supervised Medical Image Segmentation through Dual-task Consistency},
        author={Luo, Xiangde and Chen, Jieneng and Song, Tao and  Wang, Guotai},
        journal={AAAI Conference on Artificial Intelligence},
        year={2021},
        pages={8801-8809}
      }
      @misc{ssl4mis2020,
        title={{SSL4MIS}},
        author={Luo, Xiangde and Chen, Jieneng and Song, Tao and  Wang, Guotai},
        howpublished={\url{https://github.com/HiLab-git/SSL4MIS}},
        year={2020}
      }
    

Literature reviews of semi-supervised learning approach for medical image segmentation (SSL4MIS).

Date The First and Last Authors Title Code Reference
2021-09 K. Wang and Y. Wang Tripled-Uncertainty Guided Mean Teacher Model for Semi-supervised Medical Image Segmentation Code MICCAI2021
2021-09 H. Huang and R. Tong 3D Graph-S2Net: Shape-Aware Self-ensembling Network for Semi-supervised Segmentation with Bilateral Graph Convolution None MICCAI2021
2021-09 L. Zhu and B. Ooi Semi-Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation Code MICCAI2021
2021-09 R. Zhang and G. Li Self-supervised Correction Learning for Semi-supervised Biomedical Image Segmentation Code MICCAI2021
2021-09 D. Kiyasseh and A. Chen Segmentation of Left Atrial MR Images via Self-supervised Semi-supervised Meta-learning None MICCAI2021
2021-09 Y. Wu and J. Cai Enforcing Mutual Consistency of Hard Regions for Semi-supervised Medical Image Segmentation None Arxiv
2021-09 X. Zeng and Y. Wang Reciprocal Learning for Semi-supervised Segmentation Code MICCAI2021
2021-09 G. Zhang and S. Jiang Automatic segmentation of organs at risk and tumors in CT images of lung cancer from partially labelled datasets with a semi-supervised conditional nnU-Net None CMPB2021
2021-09 J. Chen and G. Yang Adaptive Hierarchical Dual Consistency for Semi-Supervised Left Atrium Segmentation on Cross-Domain Data Code TMI2021
2021-09 X. Hu and Y. Shi Semi-supervised Contrastive Learning for Label-efficient Medical Image Segmentation Code MICCAI2021
2021-09 G. Chen and J. Shi MTANS: Multi-Scale Mean Teacher Combined Adversarial Network with Shape-Aware Embedding for Semi-Supervised Brain Lesion Segmentation Code NeuroImage2021
2021-08 H. Peiris and M. Harandi Duo-SegNet: Adversarial Dual-Views for Semi-Supervised Medical Image Segmentation Code MICCAI2021
2021-08 J. Sun and Y. Kong Semi-Supervised Medical Image Semantic Segmentation with Multi-scale Graph Cut Loss None ICIP2021
2021-08 X. Shen and J. Lu PoissonSeg: Semi-Supervised Few-Shot Medical Image Segmentation via Poisson Learning None ArXiv
2021-08 C. You and J. Duncan SimCVD: Simple Contrastive Voxel-Wise Representation Distillation for Semi-Supervised Medical Image Segmentation None Arxiv
2021-08 C. Li and P. Heng Self-Ensembling Co-Training Framework for Semi-supervised COVID-19 CT Segmentation None JBHI2021
2021-08 H. Yang and P. H. N. With Medical Instrument Segmentation in 3D US by Hybrid Constrained Semi-Supervised Learning None JBHI2021
2021-07 W. Ding and H. Hawash RCTE: A Reliable and Consistent Temporal-ensembling Framework for Semi-supervised Segmentation of COVID-19 Lesions None Information Fusion2021
2021-06 X. Liu and S. A. Tsaftaris Semi-supervised Meta-learning with Disentanglement for Domain-generalised Medical Image Segmentation Code MICCAI2021
2021-06 P. Pandey and Mausam Contrastive Semi-Supervised Learning for 2D Medical Image Segmentation None MICCAI2021
2021-06 C. Li and Y. Yu Hierarchical Deep Network with Uncertainty-aware Semi-supervised Learning for Vessel Segmentation None Arxiv
2021-05 J. Xiang and S. Zhang Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image Segmentation None Arxiv
2021-05 S. Li and C. Guan Hierarchical Consistency Regularized Mean Teacher for Semi-supervised 3D Left Atrium Segmentation None Arxiv
2021-05 C. You and J. Duncan Momentum Contrastive Voxel-wise Representation Learning for Semi-supervised Volumetric Medical Image Segmentation None Arxiv
2021-05 Z. Xie and J. Yang Semi-Supervised Skin Lesion Segmentation with Learning Model Confidence None ICASSP2021
2021-04 S. Reiß and R. Stiefelhagen Every Annotation Counts: Multi-label Deep Supervision for Medical Image Segmentation None CVPR2021
2021-04 S. Chatterjee and A. Nurnberger DS6, Deformation-aware Semi-supervised Learning: Application to Small Vessel Segmentation with Noisy Training Data Code MIDL
2021-04 A. Meyer and M. Rak Uncertainty-Aware Temporal Self-Learning (UATS): Semi-Supervised Learning for Segmentation of Prostate Zones and Beyond Code Arxiv
2021-04 Y. Li and P. Heng Dual-Consistency Semi-Supervised Learning with Uncertainty Quantification for COVID-19 Lesion Segmentation from CT Images None MICCAI2021
2021-03 Y. Zhang and C. Zhang Dual-Task Mutual Learning for Semi-Supervised Medical Image Segmentation Code PRCV2021
2021-03 J. Peng and C. Desrosiers Boosting Semi-supervised Image Segmentation with Global and Local Mutual Information Regularization Code MELBA
2021-03 Y. Wu and L. Zhang Semi-supervised Left Atrium Segmentation with Mutual Consistency Training None MICCAI2021
2021-02 J. Peng and Y. Wang Medical Image Segmentation with Limited Supervision: A Review of Deep Network Models None Arxiv
2021-02 J. Dolz and I. B. Ayed Teach me to segment with mixed supervision: Confident students become masters Code IPMI2021
2021-02 C. Cabrera and K. McGuinness Semi-supervised Segmentation of Cardiac MRI using Image Registration None Under review for MIDL2021
2021-02 Y. Wang and A. Yuille Learning Inductive Attention Guidance for Partially Supervised Pancreatic Ductal Adenocarcinoma Prediction None TMI2021
2021-02 R. Alizadehsaniand U R. Acharya Uncertainty-Aware Semi-supervised Method using Large Unlabelled and Limited Labeled COVID-19 Data None Arxiv
2021-02 D. Yang and D. Xu Federated Semi-Supervised Learning for COVID Region Segmentation in Chest CT using Multi-National Data from China, Italy, Japan None MedIA2021
2020-01 E. Takaya and S. Kurihara Sequential Semi-supervised Segmentation for Serial Electron Microscopy Image with Small Number of Labels Code Journal of Neuroscience Methods
2021-01 Y. Zhang and Z. He Semi-supervised Cardiac Image Segmentation via Label Propagation and Style Transfer None Arxiv
2020-12 H. Wang and D. Chen Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation None Arxiv
2020-12 X. Luo and S. Zhang Efficient Semi-supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency Code MICCAI2021
2020-12 M. Abdel‐Basset and M. Ryan FSS-2019-nCov: A Deep Learning Architecture for Semi-supervised Few-Shot Segmentation of COVID-19 Infection None Knowledge-Based Systems2020
2020-11 N. Horlava and N. Scherf A comparative study of semi- and self-supervised semantic segmentation of biomedical microscopy data None Arxiv
2020-11 P. Wang and C. Desrosiers Self-paced and self-consistent co-training for semi-supervised image segmentation None MedIA2021
2020-10 Y. Sun and L. Wang Semi-supervised Transfer Learning for Infant Cerebellum Tissue Segmentation None MLMI2020
2020-10 L. Chen and D. Merhof Semi-supervised Instance Segmentation with a Learned Shape Prior Code LABELS2020
2020-10 S. Shailja and B.S. Manjunath Semi supervised segmentation and graph-based tracking of 3D nuclei in time-lapse microscopy Code Arxiv
2020-10 L. Sun and Y. Yu A Teacher-Student Framework for Semi-supervised Medical Image Segmentation From Mixed Supervision None Arxiv
2020-10 J. Ma and X. Yang Active Contour Regularized Semi-supervised Learning for COVID-19 CT Infection Segmentation with Limited Annotations Code Physics in Medicine & Biology2020
2020-10 W. Hang and J. Qin Local and Global Structure-Aware Entropy Regularized Mean Teacher Model for 3D Left Atrium Segmentation Code MICCAI2020
2020-10 K. Tan and J. Duncan A Semi-supervised Joint Network for Simultaneous Left Ventricular Motion Tracking and Segmentation in 4D Echocardiography None MICCAI2020
2020-10 Y. Wang and Z. He Double-Uncertainty Weighted Method for Semi-supervised Learning None MICCAI2020
2020-10 K. Fang and W. Li DMNet: Difference Minimization Network for Semi-supervised Segmentation in Medical Images None MICCAI2020
2020-10 X. Cao and L. Cheng Uncertainty Aware Temporal-Ensembling Model for Semi-supervised ABUS Mass Segmentation None TMI2020
2020-09 Z. Zhang and W. Zhang Semi-supervised Semantic Segmentation of Organs at Risk on 3D Pelvic CT Images None Arxiv
2020-09 J. Wang and G. Xie Semi-supervised Active Learning for Instance Segmentation via Scoring Predictions None BMVC2020
2020-09 X. Luo and S. Zhang Semi-supervised Medical Image Segmentation through Dual-task Consistency Code AAAI2021
2020-08 X. Huo and Q. Tian ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised Medical Image Segmentation None Arxiv
2020-08 Y. Xie and Y. Xia Pairwise Relation Learning for Semi-supervised Gland Segmentation None MICCAI2020
2020-07 K. Chaitanya and E. Konukoglu Semi-supervised Task-driven Data Augmentation for Medical Image Segmentation Code Arxiv
2020-07 S. Li and X. He Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images Code MICCAI2020
2020-07 Y. Li and Y. Zheng Self-Loop Uncertainty: A Novel Pseudo-Label for Semi-Supervised Medical Image Segmentation None MICCAI2020
2020-07 Z. Zhao and P. Heng Learning Motion Flows for Semi-supervised Instrument Segmentation from Robotic Surgical Video Code MICCAI2020
2020-07 Y. Zhou and P. Heng Deep Semi-supervised Knowledge Distillation for Overlapping Cervical Cell Instance Segmentation Code MICCAI2020
2020-07 A. Tehrani and H. Rivaz Semi-Supervised Training of Optical Flow Convolutional Neural Networks in Ultrasound Elastography None MICCAI2020
2020-07 Y. He and S. Li Dense biased networks with deep priori anatomy and hard region adaptation: Semi-supervised learning for fine renal artery segmentation None MedIA2020
2020-07 J. Peng and C. Desrosiers Mutual information deep regularization for semi-supervised segmentation Code MIDL2020
2020-07 Y. Xia and H. Roth Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation None WACV2020,MedIA2020
2020-07 X. Li and P. Heng Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation Code TNNLS2020
2020-06 F. Garcıa and S. Ourselin Simulation of Brain Resection for Cavity Segmentation Using Self-Supervised and Semi-Supervised Learning None MICCAI2020
2020-06 H. Yang and P. With Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid Constrained Semi-Supervised Learning and Dual-UNet None MICCAI2020
2020-05 G. Fotedar and X. Ding Extreme Consistency: Overcoming Annotation Scarcity and Domain Shifts None MICCAI2020
2020-04 C. Liu and C. Ye Semi-Supervised Brain Lesion Segmentation Using Training Images with and Without Lesions None ISBI2020
2020-04 R. Li and D. Auer A Generic Ensemble Based Deep Convolutional Neural Network for Semi-Supervised Medical Image Segmentation Code ISBI2020
2020-04 K. Ta and J. Duncan A Semi-Supervised Joint Learning Approach to Left Ventricular Segmentation and Motion Tracking in Echocardiography None ISBI2020
2020-04 Q. Chang and D. Metaxas Soft-Label Guided Semi-Supervised Learning for Bi-Ventricle Segmentation in Cardiac Cine MRI None ISBI2020
2020-04 D. Fan and L. Shao Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images Code TMI2020
2019-10 L. Yu and P. Heng Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation Code MICCAI2019
2019-10 G. Bortsova and M. Bruijne Semi-Supervised Medical Image Segmentation via Learning Consistency under Transformations None MICCAI2019
2019-10 Y. He and S. Li DPA-DenseBiasNet: Semi-supervised 3D Fine Renal Artery Segmentation with Dense Biased Network and Deep Priori Anatomy None MICCAI2019
2019-10 H. Zheng and X. Han Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior None MICCAI2019
2019-10 P. Ganayea and H. Cattin Removing Segmentation Inconsistencies with Semi-Supervised Non-Adjacency Constraint Code MedIA2019
2019-10 Y. Zhao and C. Liu Multi-view Semi-supervised 3D Whole Brain Segmentation with a Self-ensemble Network None MICCAI2019
2019-10 H. Kervade and I. Ayed Curriculum semi-supervised segmentation None MICCAI2019
2019-10 S. Chen and M. Bruijne Multi-task Attention-based Semi-supervised Learning for Medical Image Segmentation None MICCAI2019
2019-10 Z. Xu and M. Niethammer DeepAtlas: Joint Semi-Supervised Learning of Image Registration and Segmentation None MICCAI2019
2019-10 S. Sedai and R. Garnavi Uncertainty Guided Semi-supervised Segmentation of Retinal Layers in OCT Images None MICCAI2019
2019-10 G. Pombo and P. Nachev Bayesian Volumetric Autoregressive Generative Models for Better Semisupervised Learning Code MICCAI2019
2019-06 W. Cui and C. Ye Semi-Supervised Brain Lesion Segmentation with an Adapted Mean Teacher Model None IPMI2019
2019-06 K. Chaitanya and E. Konukoglu Semi-supervised and Task-Driven Data Augmentation Code IPMI2019
2019-04 M. Jafari and P. Abolmaesumi Semi-Supervised Learning For Cardiac Left Ventricle Segmentation Using Conditional Deep Generative Models as Prior None ISBI2019
2019-03 Z. Zhao and Z. Zeng Semi-Supervised Self-Taught Deep Learning for Finger Bones Segmentation None BHI
2019-03 J. Peng and C. Desrosiers Deep co-training for semi-supervised image segmentation Code PR2020
2019-01 Y. Zhou and A. Yuille Semi-Supervised 3D Abdominal Multi-Organ Segmentation via Deep Multi-Planar Co-Training None WACV2019
2018-10 P. Ganaye and H. Cattin Semi-supervised Learning for Segmentation Under Semantic Constraint Code MICCAI2018
2018-10 A. Chartsias and S. Tsaftari Factorised spatial representation learning: application in semi-supervised myocardial segmentation None MICCAI2018
2018-09 X. Li and P. Heng Semi-supervised Skin Lesion Segmentation via Transformation Consistent Self-ensembling Model Code BMVC2018
2018-04 Z. Feng and D. Shen Semi-supervised learning for pelvic MR image segmentation based on multi-task residual fully convolutional networks None ISBI2018
2017-09 L. Gu and S. Aiso Semi-supervised Learning for Biomedical Image Segmentation via Forest Oriented Super Pixels(Voxels) None MICCAI2017
2017-09 S. Sedai and R. Garnavi Semi-supervised Segmentation of Optic Cup in Retinal Fundus Images Using Variational Autoencoder None MICCAI2017
2017-09 W. Bai and D. Rueckert Semi-supervised Learning for Network-Based Cardiac MR Image Segmentation None MICCAI2017

Code for semi-supervised medical image segmentation.

Some implementations of semi-supervised learning methods can be found in this Link.

Conclusion

  • This repository provides daily-update literature reviews, algorithms' implementation, and some examples of using PyTorch for semi-supervised medical image segmentation. The project is under development. Currently, it supports 2D and 3D semi-supervised image segmentation and includes five widely-used algorithms' implementations.

  • In the next two or three months, we will provide more algorithms' implementations, examples, and pre-trained models.

Questions and Suggestions

  • If you have any questions or suggestions about this project, please contact me through email: [email protected] or QQ Group (Chinese):906808850.
Owner
Healthcare Intelligence Laboratory
Healthcare Intelligence Laboratory
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023