The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Overview

Pixel-level Self-Paced Learning for Super-Resolution

This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resolution, which has been accepted by ICASSP 2020.

[arxiv][PDF]

trained model files: Baidu Pan(code: v0be)

Requirements

This code is forked from thstkdgus35/EDSR-PyTorch. In the light of its README, following libraries are required:

  • Python 3.6+ (Python 3.7.0 in my experiments)
  • PyTorch >= 1.0.0 (1.1.0 in my experiments)
  • numpy
  • skimage
  • imageio
  • matplotlib
  • tqdm

Core Parts

pspl framework

Detail code can be found in Loss.forward, which can be simplified as:

# take L1 Loss as example

import torch
import torch.nn as nn
import torch.nn.functional as F
from . import pytorch_ssim

class Loss(nn.modules.loss._Loss):
    def __init__(self, spl_alpha, spl_beta, spl_maxVal):
        super(Loss, self).__init__()
        self.loss = nn.L1Loss()
        self.alpha = spl_alpha
        self.beta = spl_beta
        self.maxVal = spl_maxVal

    def forward(self, sr, hr, step):
        # calc sigma value
        sigma = self.alpha * step + self.beta
        # define gauss function
        gauss = lambda x: torch.exp(-((x+1) / sigma) ** 2) * self.maxVal
        # ssim value
        ssim = pytorch_ssim.ssim(hr, sr, reduction='none').detach()
        # calc attention weight
        weight = gauss(ssim).detach()
        nsr, nhr = sr * weight, hr * weight
        # calc loss
        lossval = self.loss(nsr, nhr)
        return lossval

the library pytorch_ssim is focked from Po-Hsun-Su/pytorch-ssim and rewrite some details for adopting it to our requirements.

Attention weight values change according to SSIM Index and steps: attention values

Citation

If you find this project useful for your research, please cite:

@inproceedings{lin2020pixel,
  title={Pixel-Level Self-Paced Learning For Super-Resolution}
  author={Lin, Wei and Gao, Junyu and Wang, Qi and Li, Xuelong},
  booktitle={ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  year={2020},
  pages={2538-2542}
}
Owner
Elon Lin
Elon Lin
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023