Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Related tags

Deep LearningPnP-GA
Overview

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Python 3.6 Pytorch 1.5.0 CUDA 10.2 License CC BY-NC

Our paper is accepted by ICCV2021.

Teaser

Picture: Overview of the proposed Plug-and-Play (PnP) adaption framework for generalizing gaze estimation to a new domain.

Main image

Picture: The proposed architecture.


Results

Input Method DE→DM DE→DD DG→DM DG→DD
Face Baseline 8.767 8.578 7.662 8.977
Face Baseline + PnP-GA 5.529 ↓36.9% 5.867 ↓31.6% 6.176 ↓19.4% 7.922 ↓11.8%
Face ResNet50 8.017 8.310 8.328 7.549
Face ResNet50 + PnP-GA 6.000 ↓25.2% 6.172 ↓25.7% 5.739 ↓31.1% 7.042 ↓6.7%
Face SWCNN 10.939 24.941 10.021 13.473
Face SWCNN + PnP-GA 8.139 ↓25.6% 15.794 ↓36.7% 8.740 ↓12.8% 11.376 ↓15.6%
Face + Eye CA-Net -- -- 21.276 30.890
Face + Eye CA-Net + PnP-GA -- -- 17.597 ↓17.3% 16.999 ↓44.9%
Face + Eye Dilated-Net -- -- 16.683 18.996
Face + Eye Dilated-Net + PnP-GA -- -- 15.461 ↓7.3% 16.835 ↓11.4%

This repository contains the official PyTorch implementation of the following paper:

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation
Yunfei Liu, Ruicong Liu, Haofei Wang, Feng Lu

Abstract: Deep neural networks have significantly improved appearance-based gaze estimation accuracy. However, it still suffers from unsatisfactory performance when generalizing the trained model to new domains, e.g., unseen environments or persons. In this paper, we propose a plugand-play gaze adaptation framework (PnP-GA), which is an ensemble of networks that learn collaboratively with the guidance of outliers. Since our proposed framework does not require ground-truth labels in the target domain, the existing gaze estimation networks can be directly plugged into PnP-GA and generalize the algorithms to new domains. We test PnP-GA on four gaze domain adaptation tasks, ETH-to-MPII, ETH-to-EyeDiap, Gaze360-to-MPII, and Gaze360-to-EyeDiap. The experimental results demonstrate that the PnP-GA framework achieves considerable performance improvements of 36.9%, 31.6%, 19.4%, and 11.8% over the baseline system. The proposed framework also outperforms the state-of-the-art domain adaptation approaches on gaze domain adaptation tasks.

Resources

Material related to our paper is available via the following links:

System requirements

  • Only Linux is tested, Windows is under test.
  • 64-bit Python 3.6 installation.

Playing with pre-trained networks and training

Config

You need to modify the config.yaml first, especially xxx/image, xxx/label, and xxx_pretrains params.

xxx/image represents the path of label file.

xxx/root represents the path of image file.

xxx_pretrains represents the path of pretrained models.

A example of label file is data folder. Each line in label file is conducted as:

p00/face/1.jpg 0.2558059438789034,-0.05467275933864655 -0.05843388117618364,0.46745964684693614 ... ...

Where our code reads image data form os.path.join(xxx/root, "p00/face/1.jpg") and reads ground-truth labels of gaze direction from the rest in label file.

Train

We provide three optional arguments, which are --oma2, --js and --sg. They repersent three different network components, which could be found in our paper.

--source and --target represent the datasets used as the source domain and the target domain. You can choose among eth, gaze360, mpii, edp.

--i represents the index of person which is used as the training set. You can set it as -1 for using all the person as the training set.

--pics represents the number of target domain samples for adaptation.

We also provide other arguments for adjusting the hyperparameters in our PnP-GA architecture, which could be found in our paper.

For example, you can run the code like:

python3 adapt.py --i 0 --pics 10 --savepath path/to/save --source eth --target mpii --gpu 0 --js --oma2 --sg

Test

--i, --savepath, --target are the same as training.

--p represents the index of person which is used as the training set in the adaptation process.

For example, you can run the code like:

python3 test.py --i -1 --p 0 --savepath path/to/save --target mpii

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{liu2021PnP_GA,
  title={Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation},
  author={Liu, Yunfei and Liu, Ruicong and Wang, Haofei and Lu, Feng},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Contact

If you have any questions, feel free to E-mail me via: lyunfei(at)buaa.edu.cn

Owner
Yunfei Liu
;-)
Yunfei Liu
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022