Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Related tags

Deep LearningSafeDRL
Overview

Getting Started

This repository contains the code used for the following publications:

  • Probabilistic Guarantees for Safe Deep Reinforcement Learning (FORMATS 2020)
  • Verifying Reinforcement Learning up to Infinity (IJCAI 2021)
  • Verified Probabilistic Policies for Deep Reinforcement Learning (NFM 2022)

These instructions will help with setting up the project

Prerequisites

Create a virtual environment with conda:

conda env create -f environment.yml
conda activate safedrl

This will take care of installing all the dependencies needed by python

In addition, download PRISM from the following link: https://github.com/phate09/prism

Ensure you have Gradle installed (https://gradle.org/install/)

Running the code

Before running any code, in a new terminal go to the PRISM project folder and run

gradle run

This will enable the communication channel between PRISM and the rest of the repository

Probabilistic Guarantees for Safe Deep Reinforcement Learning (FORMATS 2020)

Training

Run the train_pendulum.py inside agents/dqn to train the agent on the inverted pendulum problem and record the location of the saved agent

Analysis

Run the domain_analysis_sym.py inside runnables/symbolic/dqn changing paths to point to the saved network

Verifying Reinforcement Learning up to Infinity (IJCAI 2021)

####Paper results ## download and unzip experiment_collection_final.zip in the 'save' directory

run tensorboard --logdir=./save/experiment_collection_final

(results for the output range analysis experiments are in experiment_collection_ora_final.zip)

####Train neural networks from scratch ## run either:

  • training/tune_train_PPO_bouncing_ball.py
  • training/tune_train_PPO_car.py
  • training/tune_train_PPO_cartpole.py

####Check safety of pretrained agents ## download and unzip pretrained_agents.zip in the 'save' directory

run verification/run_tune_experiments.py

(to monitor the progress of the algorithm run tensorboard --logdir=./save/experiment_collection_final)

The results in tensorboard can be filtered using regular expressions (eg. "bouncing_ball.* template: 0") on the search bar on the left:

The name of the experiment contains the name of the problem (bouncing_ball, cartpole, stopping car), the amount of adversarial noise ("eps", only for stopping_car), the time steps length for the dynamics of the system ("tau", only for cartpole) and the choice of restriction in order of complexity (0 being box, 1 being the chosen template, and 2 being octagon).

The table in the paper is filled by using some of the metrics reported in tensorboard:

  • max_t: Avg timesteps
  • seen: Avg polyhedra
  • time_since_restore: Avg clock time (s)

alt text

Verified Probabilistic Policies for Deep Reinforcement Learning (NFM 2022)

Owner
Edoardo Bacci
Edoardo Bacci
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
Roger Labbe 13k Dec 29, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022