This repository contains the source code for the paper First Order Motion Model for Image Animation

Overview

!!! Check out our new paper and framework improved for articulated objects

First Order Motion Model for Image Animation

This repository contains the source code for the paper First Order Motion Model for Image Animation by Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci and Nicu Sebe.

Example animations

The videos on the left show the driving videos. The first row on the right for each dataset shows the source videos. The bottom row contains the animated sequences with motion transferred from the driving video and object taken from the source image. We trained a separate network for each task.

VoxCeleb Dataset

Screenshot

Fashion Dataset

Screenshot

MGIF Dataset

Screenshot

Installation

We support python3. To install the dependencies run:

pip install -r requirements.txt

YAML configs

There are several configuration (config/dataset_name.yaml) files one for each dataset. See config/taichi-256.yaml to get description of each parameter.

Pre-trained checkpoint

Checkpoints can be found under following link: google-drive or yandex-disk.

Animation Demo

To run a demo, download checkpoint and run the following command:

python demo.py  --config config/dataset_name.yaml --driving_video path/to/driving --source_image path/to/source --checkpoint path/to/checkpoint --relative --adapt_scale

The result will be stored in result.mp4.

The driving videos and source images should be cropped before it can be used in our method. To obtain some semi-automatic crop suggestions you can use python crop-video.py --inp some_youtube_video.mp4. It will generate commands for crops using ffmpeg. In order to use the script, face-alligment library is needed:

git clone https://github.com/1adrianb/face-alignment
cd face-alignment
pip install -r requirements.txt
python setup.py install

Animation demo with Docker

If you are having trouble getting the demo to work because of library compatibility issues, and you're running Linux, you might try running it inside a Docker container, which would give you better control over the execution environment.

Requirements: Docker 19.03+ and nvidia-docker installed and able to successfully run the nvidia-docker usage tests.

We'll first build the container.

docker build -t first-order-model .

And now that we have the container available locally, we can use it to run the demo.

docker run -it --rm --gpus all \
       -v $HOME/first-order-model:/app first-order-model \
       python3 demo.py --config config/vox-256.yaml \
           --driving_video driving.mp4 \
           --source_image source.png  \ 
           --checkpoint vox-cpk.pth.tar \ 
           --result_video result.mp4 \
           --relative --adapt_scale

Colab Demo

@graphemecluster prepared a gui-demo for the google-colab see: demo.ipynb. To run press Open In Colab button.

For old demo, see old-demo.ipynb.

Face-swap

It is possible to modify the method to perform face-swap using supervised segmentation masks. Screenshot For both unsupervised and supervised video editing, such as face-swap, please refer to Motion Co-Segmentation.

Training

To train a model on specific dataset run:

CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py --config config/dataset_name.yaml --device_ids 0,1,2,3

The code will create a folder in the log directory (each run will create a time-stamped new directory). Checkpoints will be saved to this folder. To check the loss values during training see log.txt. You can also check training data reconstructions in the train-vis subfolder. By default the batch size is tunned to run on 2 or 4 Titan-X gpu (appart from speed it does not make much difference). You can change the batch size in the train_params in corresponding .yaml file.

Evaluation on video reconstruction

To evaluate the reconstruction performance run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode reconstruction --checkpoint path/to/checkpoint

You will need to specify the path to the checkpoint, the reconstruction subfolder will be created in the checkpoint folder. The generated video will be stored to this folder, also generated videos will be stored in png subfolder in loss-less '.png' format for evaluation. Instructions for computing metrics from the paper can be found: https://github.com/AliaksandrSiarohin/pose-evaluation.

Image animation

In order to animate videos run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode animate --checkpoint path/to/checkpoint

You will need to specify the path to the checkpoint, the animation subfolder will be created in the same folder as the checkpoint. You can find the generated video there and its loss-less version in the png subfolder. By default video from test set will be randomly paired, but you can specify the "source,driving" pairs in the corresponding .csv files. The path to this file should be specified in corresponding .yaml file in pairs_list setting.

There are 2 different ways of performing animation: by using absolute keypoint locations or by using relative keypoint locations.

  1. Animation using absolute coordinates: the animation is performed using the absolute postions of the driving video and appearance of the source image. In this way there are no specific requirements for the driving video and source appearance that is used. However this usually leads to poor performance since unrelevant details such as shape is transfered. Check animate parameters in taichi-256.yaml to enable this mode.

  1. Animation using relative coordinates: from the driving video we first estimate the relative movement of each keypoint, then we add this movement to the absolute position of keypoints in the source image. This keypoint along with source image is used for animation. This usually leads to better performance, however this requires that the object in the first frame of the video and in the source image have the same pose

Datasets

  1. Bair. This dataset can be directly downloaded.

  2. Mgif. This dataset can be directly downloaded.

  3. Fashion. Follow the instruction on dataset downloading from.

  4. Taichi. Follow the instructions in data/taichi-loading or instructions from https://github.com/AliaksandrSiarohin/video-preprocessing.

  5. Nemo. Please follow the instructions on how to download the dataset. Then the dataset should be preprocessed using scripts from https://github.com/AliaksandrSiarohin/video-preprocessing.

  6. VoxCeleb. Please follow the instruction from https://github.com/AliaksandrSiarohin/video-preprocessing.

Training on your own dataset

  1. Resize all the videos to the same size e.g 256x256, the videos can be in '.gif', '.mp4' or folder with images. We recommend the later, for each video make a separate folder with all the frames in '.png' format. This format is loss-less, and it has better i/o performance.

  2. Create a folder data/dataset_name with 2 subfolders train and test, put training videos in the train and testing in the test.

  3. Create a config config/dataset_name.yaml, in dataset_params specify the root dir the root_dir: data/dataset_name. Also adjust the number of epoch in train_params.

Additional notes

Citation:

@InProceedings{Siarohin_2019_NeurIPS,
  author={Siarohin, Aliaksandr and Lathuilière, Stéphane and Tulyakov, Sergey and Ricci, Elisa and Sebe, Nicu},
  title={First Order Motion Model for Image Animation},
  booktitle = {Conference on Neural Information Processing Systems (NeurIPS)},
  month = {December},
  year = {2019}
}
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023