3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

Overview

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

arXiv

Introduction

This repository contains the code and models for the following paper.

Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks
Cheng Yu, Bo Wang, Bo Yang, Robby T. Tan
Computer Vision and Pattern Recognition, CVPR 2021.

Overview of the proposed method:

Updates

  • 06/18/2021 evaluation code of PCK (person-centric) and PCK_abs (camera-centric), and pre-trained model for MuPoTS dataset tested and released

Installation

Dependencies

Pytorch >= 1.5
Python >= 3.6

Create an enviroment.

conda create -n 3dmpp python=3.6
conda activate 3dmpp

Install the latest version of pytorch (tested on pytorch 1.5 - 1.7) based on your OS and GPU driver installed following install pytorch. For example, command to use on Linux with CUDA 11.0 is like:

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch

Install dependencies

pip install - r requirements.txt

Build the Fast Gaussian Map tool:

cd lib/fastgaus
python setup.py build_ext --inplace
cd ../..

Models and Testing Data

Pre-trained Models

Download the pre-trained model and processed human keypoint files here, and unzip the downloaded zip file to this project's root directory, two folders are expected to see after doing that (i.e., ./ckpts and ./mupots).

MuPoTS Dataset

MuPoTS eval set is needed to perform evaluation as the results reported in Table 3 in the main paper, which is available on the MuPoTS dataset website. You need to download the mupots-3d-eval.zip file, unzip it, and run get_mupots-3d.sh to download the dataset. After the download is complete, a MultiPersonTestSet.zip is avaiable, ~5.6 GB. Unzip it and move the folder MultiPersonTestSet to the root directory of the project to perform evaluation on MuPoTS test set. Now you should see the following directory structure.

${3D-Multi-Person-Pose_ROOT}
|-- ckpts              <-- the downloaded pre-trained Models
|-- lib
|-- MultiPersonTestSet <-- the newly added MuPoTS eval set
|-- mupots             <-- the downloaded processed human keypoint files
|-- util
|-- 3DMPP_framework.png
|-- calculate_mupots_btmup.py
|-- other python code, LICENSE, and README files
...

Usage

MuPoTS dataset evaluation

3D Multi-Person Pose Estimation Evaluation on MuPoTS Dataset

The following table is similar to Table 3 in the main paper, where the quantitative evaluations on MuPoTS-3D dataset are provided (best performance in bold). Evaluation instructions to reproduce the results (PCK and PCK_abs) are provided in the next section.

Group Methods PCK PCK_abs
Person-centric (relative 3D pose) Mehta et al., 3DV'18 65.0 N/A
Person-centric (relative 3D pose) Rogez et al., IEEE TPAMI'19 70.6 N/A
Person-centric (relative 3D pose) Mehta et al., ACM TOG'20 70.4 N/A
Person-centric (relative 3D pose) Cheng et al., ICCV'19 74.6 N/A
Person-centric (relative 3D pose) Cheng et al., AAAI'20 80.5 N/A
Camera-centric (absolute 3D pose) Moon et al., ICCV'19 82.5 31.8
Camera-centric (absolute 3D pose) Lin et al., ECCV'20 83.7 35.2
Camera-centric (absolute 3D pose) Zhen et al., ECCV'20 80.5 38.7
Camera-centric (absolute 3D pose) Li et al., ECCV'20 82.0 43.8
Camera-centric (absolute 3D pose) Cheng et al., AAAI'21 87.5 45.7
Camera-centric (absolute 3D pose) Our method 89.6 48.0

Run evaluation on MuPoTS dataset with estimated 2D joints as input

We split the whole pipeline into several separate steps to make it more clear for the users.

python calculate_mupots_topdown_pts.py
python calculate_mupots_topdown_depth.py
python calculate_mupots_btmup.py
python calculate_mupots_integrate.py

Please note that python calculate_mupots_btmup.py is going to take a while (30-40 minutes depending on your machine).

To evaluate the person-centric 3D multi-person pose estimation:

python eval_mupots_pck.py

After running the above code, the following PCK (person-centric, pelvis-based origin) value is expected, which matches the number reported in Table 3, PCK = 89 (percentage) in the paper.

...
Seq: 18
Seq: 19
Seq: 20
PCK_MEAN: 0.8994453169938017

To evaluate camera-centric (i.e., camera coordinates) 3D multi-person pose estimation:

python eval_mupots_pck_abs.py

After running the above code, the following PCK_abs (camera-centric) value is expected, which matches the number reported in Table 3, PCK_abs = 48 (percentage) in the paper.

...
Seq: 18
Seq: 19
Seq: 20
PCK_MEAN: 0.48514110933606175

License

The code is released under the MIT license. See LICENSE for details.

Citation

If this work is useful for your research, please cite our paper.

@InProceedings{Cheng_2021_CVPR,
    author    = {Cheng, Yu and Wang, Bo and Yang, Bo and Tan, Robby T.},
    title     = {Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7649-7659}
}
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022