3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

Overview

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

arXiv

Introduction

This repository contains the code and models for the following paper.

Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks
Cheng Yu, Bo Wang, Bo Yang, Robby T. Tan
Computer Vision and Pattern Recognition, CVPR 2021.

Overview of the proposed method:

Updates

  • 06/18/2021 evaluation code of PCK (person-centric) and PCK_abs (camera-centric), and pre-trained model for MuPoTS dataset tested and released

Installation

Dependencies

Pytorch >= 1.5
Python >= 3.6

Create an enviroment.

conda create -n 3dmpp python=3.6
conda activate 3dmpp

Install the latest version of pytorch (tested on pytorch 1.5 - 1.7) based on your OS and GPU driver installed following install pytorch. For example, command to use on Linux with CUDA 11.0 is like:

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch

Install dependencies

pip install - r requirements.txt

Build the Fast Gaussian Map tool:

cd lib/fastgaus
python setup.py build_ext --inplace
cd ../..

Models and Testing Data

Pre-trained Models

Download the pre-trained model and processed human keypoint files here, and unzip the downloaded zip file to this project's root directory, two folders are expected to see after doing that (i.e., ./ckpts and ./mupots).

MuPoTS Dataset

MuPoTS eval set is needed to perform evaluation as the results reported in Table 3 in the main paper, which is available on the MuPoTS dataset website. You need to download the mupots-3d-eval.zip file, unzip it, and run get_mupots-3d.sh to download the dataset. After the download is complete, a MultiPersonTestSet.zip is avaiable, ~5.6 GB. Unzip it and move the folder MultiPersonTestSet to the root directory of the project to perform evaluation on MuPoTS test set. Now you should see the following directory structure.

${3D-Multi-Person-Pose_ROOT}
|-- ckpts              <-- the downloaded pre-trained Models
|-- lib
|-- MultiPersonTestSet <-- the newly added MuPoTS eval set
|-- mupots             <-- the downloaded processed human keypoint files
|-- util
|-- 3DMPP_framework.png
|-- calculate_mupots_btmup.py
|-- other python code, LICENSE, and README files
...

Usage

MuPoTS dataset evaluation

3D Multi-Person Pose Estimation Evaluation on MuPoTS Dataset

The following table is similar to Table 3 in the main paper, where the quantitative evaluations on MuPoTS-3D dataset are provided (best performance in bold). Evaluation instructions to reproduce the results (PCK and PCK_abs) are provided in the next section.

Group Methods PCK PCK_abs
Person-centric (relative 3D pose) Mehta et al., 3DV'18 65.0 N/A
Person-centric (relative 3D pose) Rogez et al., IEEE TPAMI'19 70.6 N/A
Person-centric (relative 3D pose) Mehta et al., ACM TOG'20 70.4 N/A
Person-centric (relative 3D pose) Cheng et al., ICCV'19 74.6 N/A
Person-centric (relative 3D pose) Cheng et al., AAAI'20 80.5 N/A
Camera-centric (absolute 3D pose) Moon et al., ICCV'19 82.5 31.8
Camera-centric (absolute 3D pose) Lin et al., ECCV'20 83.7 35.2
Camera-centric (absolute 3D pose) Zhen et al., ECCV'20 80.5 38.7
Camera-centric (absolute 3D pose) Li et al., ECCV'20 82.0 43.8
Camera-centric (absolute 3D pose) Cheng et al., AAAI'21 87.5 45.7
Camera-centric (absolute 3D pose) Our method 89.6 48.0

Run evaluation on MuPoTS dataset with estimated 2D joints as input

We split the whole pipeline into several separate steps to make it more clear for the users.

python calculate_mupots_topdown_pts.py
python calculate_mupots_topdown_depth.py
python calculate_mupots_btmup.py
python calculate_mupots_integrate.py

Please note that python calculate_mupots_btmup.py is going to take a while (30-40 minutes depending on your machine).

To evaluate the person-centric 3D multi-person pose estimation:

python eval_mupots_pck.py

After running the above code, the following PCK (person-centric, pelvis-based origin) value is expected, which matches the number reported in Table 3, PCK = 89 (percentage) in the paper.

...
Seq: 18
Seq: 19
Seq: 20
PCK_MEAN: 0.8994453169938017

To evaluate camera-centric (i.e., camera coordinates) 3D multi-person pose estimation:

python eval_mupots_pck_abs.py

After running the above code, the following PCK_abs (camera-centric) value is expected, which matches the number reported in Table 3, PCK_abs = 48 (percentage) in the paper.

...
Seq: 18
Seq: 19
Seq: 20
PCK_MEAN: 0.48514110933606175

License

The code is released under the MIT license. See LICENSE for details.

Citation

If this work is useful for your research, please cite our paper.

@InProceedings{Cheng_2021_CVPR,
    author    = {Cheng, Yu and Wang, Bo and Yang, Bo and Tan, Robby T.},
    title     = {Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7649-7659}
}
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022