U-Net: Convolutional Networks for Biomedical Image Segmentation

Overview

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

This tutorial shows how to use Keras library to build deep neural network for ultrasound image nerve segmentation. More info on this Kaggle competition can be found on https://www.kaggle.com/c/ultrasound-nerve-segmentation.

This deep neural network achieves ~0.57 score on the leaderboard based on test images, and can be a good staring point for further, more serious approaches.

The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Segmentation.


Overview

Data

Provided data is processed by data.py script. This script just loads the images and saves them into NumPy binary format files .npy for faster loading later.

Pre-processing

The images are not pre-processed in any way, except resizing to 64 x 80. Since the images are pretty noisy, I expect that some thoughtful pre-processing could yield better performance of the model.

Output images (masks) are scaled to [0, 1] interval.

Model

The provided model is basically a convolutional auto-encoder, but with a twist - it has skip connections from encoder layers to decoder layers that are on the same "level". See picture below (note that image size and numbers of convolutional filters in this tutorial differs from the original U-Net architecture).

img/u-net-architecture.png

This deep neural network is implemented with Keras functional API, which makes it extremely easy to experiment with different interesting architectures.

Output from the network is a 64 x 80 which represents mask that should be learned. Sigmoid activation function makes sure that mask pixels are in [0, 1] range.

Training

The model is trained for 20 epochs, where each epoch took ~30 seconds on Titan X. Memory footprint of the model is ~800MB.

After 20 epochs, calculated Dice coefficient is ~0.68, which yielded ~0.57 score on leaderboard, so obviously this model overfits (cross-validation pull requests anyone? ;)).

Loss function for the training is basically just a negative of Dice coefficient (which is used as evaluation metric on the competition), and this is implemented as custom loss function using Keras backend - check dice_coef() and dice_coef_loss() functions in train.py for more detail. Also, for making the loss function smooth, a factor smooth = 1 factor is added.

The weights are updated by Adam optimizer, with a 1e-5 learning rate. During training, model's weights are saved in HDF5 format.


How to use

Dependencies

This tutorial depends on the following libraries:

  • cv2 (OpenCV)
  • Theano and/or Tensorflow
  • Keras >= 1.0

Also, this code should be compatible with Python versions 2.7-3.5.

Prepare the data

In order to extract raw images and save them to .npy files, you should first prepare its structure. Make sure that raw dir is located in the root of this project. Also, the tree of raw dir must be like:

-raw
 |
 ---- train
 |    |
 |    ---- 1_1.tif
 |    |
 |    ---- …
 |
 ---- test
      |
      ---- 1.tif
      |
      ---- …
  • Now run python data.py.

Running this script will create train and test images and save them to .npy files.

Define the model

  • Check out get_unet() in train.py to modify the model, optimizer and loss function.

Train the model and generate masks for test images

  • Run python train.py to train the model.

Check out train_predict() to modify the number of iterations (epochs), batch size, etc.

After this script finishes, in imgs_mask_test.npy masks for corresponding images in imgs_test.npy should be generated. I suggest you examine these masks for getting further insight of your model's performance.

Generate submission

  • Run python submission.py to generate the submission file submission.csv for the generated masks.

Check out function submission() and run_length_enc() (thanks woshialex) for details.

About Keras

Keras is a minimalist, highly modular neural networks library, written in Python and capable of running on top of either TensorFlow or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

Use Keras if you need a deep learning library that:

allows for easy and fast prototyping (through total modularity, minimalism, and extensibility). supports both convolutional networks and recurrent networks, as well as combinations of the two. supports arbitrary connectivity schemes (including multi-input and multi-output training). runs seamlessly on CPU and GPU. Read the documentation Keras.io

Keras is compatible with: Python 2.7-3.5.

Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022