[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Overview

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight)

Demo | Paper

[NEW!] Time to play with our interactive web demo!

Numerous task-specific variants of conditional generative adversarial networks have been developed for image completion. Yet, a serious limitation remains that all existing algorithms tend to fail when handling large-scale missing regions. To overcome this challenge, we propose a generic new approach that bridges the gap between image-conditional and recent modulated unconditional generative architectures via co-modulation of both conditional and stochastic style representations. Also, due to the lack of good quantitative metrics for image completion, we propose the new Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS), which robustly measures the perceptual fidelity of inpainted images compared to real images via linear separability in a feature space. Experiments demonstrate superior performance in terms of both quality and diversity over state-of-the-art methods in free-form image completion and easy generalization to image-to-image translation.

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I Chang, Yan Xu
Tsinghua University and Microsoft Research
arXiv | OpenReview

Overview

This repo is implemented upon and has the same dependencies as the official StyleGAN2 repo. We also provide a Dockerfile for Docker users. This repo currently supports:

  • Large scale image completion experiments on FFHQ and Places2
  • Image-to-image translation experiments on edges to photos and COCO-Stuff
  • Evaluation code of Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS)

Datasets

  • FFHQ dataset (in TFRecords format) can be downloaded following the StyleGAN2 repo.
  • Places2 dataset can be downloaded in this website (Places365-Challenge 2016 high-resolution images, training set and validation set). The raw images should be converted into TFRecords using dataset_tools/create_places2.py.

Training

The following script is for training on FFHQ. It will splits 10k images for validation. We recommend using 8 NVIDIA Tesla V100 GPUs for training. Training at 512x512 resolution takes about 1 week.

python run_training.py --data-dir=DATA_DIR --dataset=DATASET --metrics=ids10k --num-gpus=8

The following script is for training on Places2, which has a validation set of 36500 images:

python run_training.py --data-dir=DATA_DIR --dataset=DATASET --metrics=ids36k5 --total-kimg 50000 --num-gpus=8

Evaluation

The following script is for evaluation:

python run_metrics.py --data-dir=DATA_DIR --dataset=DATASET --network=CHECKPOINT_FILE(S) --metrics=METRIC(S) --num-gpus=1

Commonly used metrics are ids10k and ids36k5 (for FFHQ and Places2 respectively), which will compute P-IDS and U-IDS together with FID. By default, masks are generated randomly for evaluation, or you may append the metric name with -h0 ([0.0, 0.2]) to -h4 ([0.8, 1.0]) to specify the range of masked ratio.

Our pre-trained models are available on Google Drive. Below lists our provided pre-trained models:

Model name & URL Description
co-mod-gan-ffhq-9-025000.pkl Large scale image completion on FFHQ (512x512)
co-mod-gan-ffhq-10-025000.pkl Large scale image completion on FFHQ (1024x1024)
co-mod-gan-places2-050000.pkl Large scale image completion on Places2 (512x512)
co-mod-gan-coco-stuff-025000.pkl Image-to-image translation on COCO-Stuff (labels to photos) (512x512)
co-mod-gan-edges2shoes-025000.pkl Image-to-image translation on edges2shoes (256x256)
co-mod-gan-edges2handbags-025000.pkl Image-to-image translation on edges2handbags (256x256)

Use the following script to run the interactive demo locally:

python run_demo.py -d DATA_DIR/DATASET -c CHECKPOINT_FILE(S)

Citation

If you find this code helpful, please cite our paper:

@inproceedings{zhao2021comodgan,
  title={Large Scale Image Completion via Co-Modulated Generative Adversarial Networks},
  author={Zhao, Shengyu and Cui, Jonathan and Sheng, Yilun and Dong, Yue and Liang, Xiao and Chang, Eric I and Xu, Yan},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
Shengyu Zhao
Undergraduate at IIIS, Tsinghua University. Working with MIT and Microsoft Research.
Shengyu Zhao
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022