High-fidelity performance metrics for generative models in PyTorch

Overview

High-fidelity performance metrics for generative models in PyTorch

Documentation Status TestStatus PyPiVersion PyPiDownloads Twitter Follow

This repository provides precise, efficient, and extensible implementations of the popular metrics for generative model evaluation, including:

  • Inception Score (ISC)
  • Fréchet Inception Distance (FID)
  • Kernel Inception Distance (KID)
  • Perceptual Path Length (PPL)

Precision: Unlike many other reimplementations, the values produced by torch-fidelity match reference implementations up to machine precision. This allows using torch-fidelity for reporting metrics in papers instead of scattered and slow reference implementations. Read more about precision

Efficiency: Feature sharing between different metrics saves recomputation time, and an additional caching level avoids recomputing features and statistics whenever possible. High efficiency allows using torch-fidelity in the training loop, for example at the end of every epoch. Read more about efficiency

Extensibility: Going beyond 2D image generation is easy due to high modularity and abstraction of the metrics from input data, models, and feature extractors. For example, one can swap out InceptionV3 feature extractor for a one accepting 3D scan volumes, such as used in MRI. Read more about extensibility

TLDR; fast and reliable GAN evaluation in PyTorch

Installation

pip install torch-fidelity

See also: Installing the latest GitHub code

Usage Examples with Command Line

Below are three examples of using torch-fidelity to evaluate metrics from the command line. See more examples in the documentation.

Simple

Inception Score of CIFAR-10 training split:

> fidelity --gpu 0 --isc --input1 cifar10-train

inception_score_mean: 11.23678
inception_score_std: 0.09514061

Medium

Inception Score of a directory of images stored in ~/images/:

> fidelity --gpu 0 --isc --input1 ~/images/

Pro

Efficient computation of ISC and PPL for input1, and FID and KID between a generative model stored in ~/generator.onnx and CIFAR-10 training split:

> fidelity \
  --gpu 0 \
  --isc \
  --fid \
  --kid \
  --ppl \
  --input1 ~/generator.onnx \ 
  --input1-model-z-type normal \
  --input1-model-z-size 128 \
  --input1-model-num-samples 50000 \ 
  --input2 cifar10-train 

See also: Other usage examples

Quick Start with Python API

When it comes to tracking the performance of generative models as they train, evaluating metrics after every epoch becomes prohibitively expensive due to long computation times. torch_fidelity tackles this problem by making full use of caching to avoid recomputing common features and per-metric statistics whenever possible. Computing all metrics for 50000 32x32 generated images and cifar10-train takes only 2 min 26 seconds on NVIDIA P100 GPU, compared to >10 min if using original codebases. Thus, computing metrics 20 times over the whole training cycle makes overall training time just one hour longer.

In the following example, assume unconditional image generation setting with CIFAR-10, and the generative model generator, which takes a 128-dimensional standard normal noise vector.

First, import the module:

import torch_fidelity

Add the following lines at the end of epoch evaluation:

wrapped_generator = torch_fidelity.GenerativeModelModuleWrapper(generator, 128, 'normal', 0)

metrics_dict = torch_fidelity.calculate_metrics(
    input1=wrapped_generator, 
    input2='cifar10-train', 
    cuda=True, 
    isc=True, 
    fid=True, 
    kid=True, 
    verbose=False,
)

The resulting dictionary with computed metrics can logged directly to tensorboard, wandb, or console:

print(metrics_dict)

Output:

{
    'inception_score_mean': 11.23678, 
    'inception_score_std': 0.09514061, 
    'frechet_inception_distance': 18.12198,
    'kernel_inception_distance_mean': 0.01369556, 
    'kernel_inception_distance_std': 0.001310059
}

See also: Full API reference

Example of Integration with the Training Loop

Refer to sngan_cifar10.py for a complete training example.

Evolution of fixed generator latents in the example:

Evolution of fixed generator latents

A generator checkpoint resulting from training the example can be downloaded here.

Citation

Citation is recommended to reinforce the evaluation protocol in works relying on torch-fidelity. To ensure reproducibility when citing this repository, use the following BibTeX:

@misc{obukhov2020torchfidelity,
  author={Anton Obukhov and Maximilian Seitzer and Po-Wei Wu and Semen Zhydenko and Jonathan Kyl and Elvis Yu-Jing Lin},
  year=2020,
  title={High-fidelity performance metrics for generative models in PyTorch},
  url={https://github.com/toshas/torch-fidelity},
  publisher={Zenodo},
  version={v0.3.0},
  doi={10.5281/zenodo.4957738},
  note={Version: 0.3.0, DOI: 10.5281/zenodo.4957738}
}
Owner
Vikram Voleti
PhD student at Mila, University of Montreal
Vikram Voleti
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

Fidelity Investments 56 Sep 13, 2022
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf

README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent

DreamQuark 2k Dec 27, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
High-fidelity performance metrics for generative models in PyTorch

High-fidelity performance metrics for generative models in PyTorch

Vikram Voleti 5 Oct 24, 2021
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 06, 2023
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Learning Sparse Neural Networks through L0 regularization

Example implementation of the L0 regularization method described at Learning Sparse Neural Networks through L0 regularization, Christos Louizos, Max W

AMLAB 202 Nov 10, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
A PyTorch implementation of L-BFGS.

PyTorch-LBFGS: A PyTorch Implementation of L-BFGS Authors: Hao-Jun Michael Shi (Northwestern University) and Dheevatsa Mudigere (Facebook) What is it?

Hao-Jun Michael Shi 478 Dec 27, 2022
S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

Amazon Web Services 138 Jan 03, 2023
270 Dec 24, 2022
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions

Kim Seonghyeon 433 Dec 27, 2022
torch-optimizer -- collection of optimizers for Pytorch

torch-optimizer torch-optimizer -- collection of optimizers for PyTorch compatible with optim module. Simple example import torch_optimizer as optim

Nikolay Novik 2.6k Jan 03, 2023
On the Variance of the Adaptive Learning Rate and Beyond

RAdam On the Variance of the Adaptive Learning Rate and Beyond We are in an early-release beta. Expect some adventures and rough edges. Table of Conte

Liyuan Liu 2.5k Dec 27, 2022
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

878 Dec 30, 2022
An implementation of Performer, a linear attention-based transformer, in Pytorch

Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random

Phil Wang 900 Dec 22, 2022
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations

PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently

Matthias Fey 757 Jan 04, 2023