Implements pytorch code for the Accelerated SGD algorithm.

Overview

AccSGD

This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic Optimization, selected to appear at ICLR 2018.

Usage:

The code can be downloaded and placed in a given local directory. In a manner similar to using any usual optimizer from the pytorch toolkit, it is also possible to use the AccSGD optimizer with little effort. First, we require importing the optimizer through the following command:

from AccSGD import *

Next, an ASGD optimizer working with a given pytorch model can be invoked using the following command:

optimizer = AccSGD(model.parameters(), lr=0.1, kappa = 1000.0, xi = 10.0)

where, lr is the learning rate, kappa the long step parameter and xi is the statistical advantage parameter.

Guidelines on setting parameters/debugging:

The learning rate lr: lr is set in a manner similar to schemes such as vanilla Stochastic Gradient Descent (SGD)/Standard Momentum (Heavy Ball)/Nesterov's Acceleration. Note that lr is a function of batch size - a rigorous quantification of this phenomenon can be found in the following paper. Such a characterization has been observed in several empirical works.

Long Step kappa: As the networks grow deeper (e.g. with resnets) and when dealing with typically harder datasets such as CIFAR/ImageNet, employing kappa to be 10^4 or more helps. For shallow nets and easier datasets such as MNIST, a typical value of kappa can be set as 10^3 or even 10^2.

Statistical Advantage Parameter xi: xi lies between 1.0 and sqrt(kappa). When large batch sizes (nearly matching batch gradient descent) are used, it is advisable to use xi that is closer to sqrt(kappa). In general, as the batch size increases by a factor of k, increase xi by sqrt(k).

Effective ways to debug:

For Nets with ReLU/ELU type activations:

(--1--) Slower convergence: There are three reasons for this to happen:

  • This could be a result of setting the learning rate too low (similar to SGD/vanilla momentum/Nesterov's acceleration).
  • This could be as a result of setting kappa to be too high.
  • The other reason could be that xi has been set to a small value and needs to be increased.

(--2--) Oscillatory behavior/Divergence: There are two reasons for this to happen:

  • This could be a result of setting the learning rate to be too high (similar to SGD/vanilla momentum/Nesterov's acceleration).
  • The other reason is that xi has been set to a large value and needs to be decreased.

For nets with Sigmoid activations:

Slower convergence after an initial rapid decrease in error: This is a sign of an over aggressive setting of parameters and must be treated in a similar manner as the oscillatory/divergence behavior (--2--) encountered in the ReLU/ELU activation case.

Slow convergence right from the start: This is more likely related to slower convergence (--1--) encountered in the ReLU/ELU case.

Citation:

If AccSGD is used in your paper/experiments, please cite the following papers.

@inproceedings{Kidambi2018Insufficiency,
  title={On the insufficiency of existing momentum schemes for Stochastic Optimization},
  author={Kidambi, Rahul and Netrapalli, Praneeth and Jain, Prateek and Kakade, Sham},
  booktitle={International Conference on Learning Representations},
  year={2018}
}

@Article{Jain2017Accelerating,
  title={Accelerating Stochastic Gradient Descent},
  author={Jain, Prateek and Kakade, Sham and Kidambi, Rahul and Netrapalli, Praneeth and Sidford, Aaron},
  journal={CoRR},
  volume = {abs/1704.08227},
  year={2017}
}
An optimizer that trains as fast as Adam and as good as SGD.

AdaBound An optimizer that trains as fast as Adam and as good as SGD, for developing state-of-the-art deep learning models on a wide variety of popula

LoLo 2.9k Dec 27, 2022
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022
Model summary in PyTorch similar to `model.summary()` in Keras

Keras style model.summary() in PyTorch Keras has a neat API to view the visualization of the model which is very helpful while debugging your network.

Shubham Chandel 3.7k Dec 29, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
Fast Discounted Cumulative Sums in PyTorch

TODO: update this README! Fast Discounted Cumulative Sums in PyTorch This repository implements an efficient parallel algorithm for the computation of

Daniel Povey 7 Feb 17, 2022
On the Variance of the Adaptive Learning Rate and Beyond

RAdam On the Variance of the Adaptive Learning Rate and Beyond We are in an early-release beta. Expect some adventures and rough edges. Table of Conte

Liyuan Liu 2.5k Dec 27, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL components from published papers, standardized evaluation, and experiment management.

GCL: Graph Contrastive Learning Library for PyTorch 592 Jan 07, 2023
PyTorch to TensorFlow Lite converter

PyTorch to TensorFlow Lite converter

Omer Ferhat Sarioglu 140 Dec 13, 2022
Tutorial for surrogate gradient learning in spiking neural networks

SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started

Friedemann Zenke 203 Nov 28, 2022
Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS

(Generic) EfficientNets for PyTorch A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter ef

Ross Wightman 1.5k Jan 01, 2023
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
A few Windows specific scripts for PyTorch

It is a repo that contains scripts that makes using PyTorch on Windows easier. Easy Installation Update: Starting from 0.4.0, you can go to the offici

408 Dec 15, 2022
A pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Distiller is an open-source Python package for neural network compression research.

Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres

Intel Labs 4.1k Dec 28, 2022
A very simple and small path tracer written in pytorch meant to be run on the GPU

MentisOculi Pytorch Path Tracer A very simple and small path tracer written in pytorch meant to be run on the GPU Why use pytorch and not some other c

Matthew B. Mirman 222 Dec 01, 2022
Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Fangjun Kuang 119 Jan 03, 2023
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

1k Dec 28, 2022
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 05, 2023
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022