Handwritten_Text_Recognition

Overview

Deep Learning framework for Line-level Handwritten Text Recognition

Short presentation of our project

  1. Introduction

  2. Installation
    2.a Install conda environment
    2.b Download databases

    • IAM dataset
    • ICFHR 2014 dataset
  3. How to use
    3.a Make predictions on unlabelled data using our best networks
    3.b Train and test a network from scratch
    3.c Test a model without retraining it

  4. References

  5. Contact

1. Introduction

This work was an internship project under Mathieu Aubry's supervision, at the LIGM lab, located in Paris.

In HTR, the task is to predict a transcript from an image of a handwritten text. A commonly used structure for this task is Convolutional Recurrent Neural Networks (CRNN). One CRNN network consists of a feature extractor (often with convolutional layers), followed by a recurrent network (LSTM).

This github provides a framework to train and test CRNN networks on handwritten grayscale line-level datasets. This github also provides code to generate predictions on an unlabelled, line-level, grayscale line-level dataset. There are several options for the structure of the CRNN used, image preprocessing, dataset used, data augmentation.

alt text

2. Installation

Prerequisites

Make sure you have Anaconda installed (version >= to 4.7.10, you may not be able to install correct dependencies if older). If not, follow the installation instructions provided at https://docs.anaconda.com/anaconda/install/.

Also pull the git.

2.a Download and activate conda environment

Once in the git folder on your machine, run the command lines :

conda env create -f HTR_environment.yml
conda activate HTR 

2.b Download databases

You will only need to download these databases if you want to train your own network from scratch. The framework is built to train a network on one of these 2 datasets : IAM and ICFHR2014 HTR competition. [ADD REF TO SLIDES]

  • Before downloading IAM dataset, you need to register on this website. Once that's done, you need to download :

    • The 'lines' folder at this link.
    • The 'split' folder at this link.
    • The 'lines.txt' file at this link.
  • For ICFHR2014 dataset, you need to download the 'BenthamDatasetR0-GT' folder at this link.

Make sure to download the two databases in the same folder. Structure must be

Your data folder / 
    IAM/
        lines.txt
        lines/
        split/
            trainset.txt
            testset.txt
            validationset1.txt
            validationset2.txt
            
    ICFHR2014/
        BenthamDatasetR0-GT/ 

    Your own dataset/

3. How to use

3.a Make predictions on your own unlabelled dataset

Running this code will use model stored at model_path to make predictions on images stored in data_path. The predictions will be stored in predictions.txt in data_path folder.

python lines_predictor.py --data_path datapath  --model_path ./trained_networks/IAM_model_imgH64.pth --imgH 64

/!\ Make sure that each image in the data folder has a unique file name and all images are in .jpg form. When you use our trained model with imgH as 64 (i.e. IAM_model_imgH64.pth), you have to set the argument --imgH as 64.

3.b Train a network from scratch

python train.py --dataset dataset  --tr_data_path data_dir --save_model_path path

Before running the code, make sure that you change ROOT_PATH variable at the beginning of params.py to the path of the folder you want to save your models in. Main arguments :

  • --dataset: name of the dataset to train and test on. Supported values are ICFHR2014 and IAM.
  • --tr_data_path: location of the train dataset folder on local machine. See section [??] for downloading datasets.
  • --save_model_path: path of the folder where model will be saved if params.save is set to True.

Main learning arguments :

  • --data_aug: If set to True, will apply random affine data transformation to the training images.

  • --optimizer: Which optimizer to use. Supported values are rmsprop, adam, adadelta, and sgd. We recommend using RMSprop, which got best results in our experiments. See params.py for optimizer-specific parameters.

  • --epochs : Number of training epochs

  • --lr: Learning rate at the beginning of training.

  • --milestones: List of the epochs at which the learning rate will be divided by 10.

  • feat_extractor: Structure to use for the feature extractor. Supported values are resnet18, custom_resnet, and conv.

    • resnet18 : standard structure of resnet18.
    • custom_resnet: variant of resnet18 that we tuned for our experiments.
    • conv: Use this option if you want to use a purely convolutional feature extractor and not a residual one. See conv parameters in params.py to choose conv structure.

3.c Test a model without retraining it

Running this code will compute the average CER and WER of model stored at pretrained_model path on the testing set of chosen dataset.

python train.py --train '' --save '' --pretrained_model model_path --dataset dataset --tr_data_path data_path 

Main arguments :

  • --pretrained_model: path to state_dict of pretrained model.
  • --dataset: Which dataset to test on. Supported values are ICFHR2014 and IAM.
  • --tr_data_path: path to the dataset folder (see section [??])

4. References

Graves et al. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks
Sánchez et al. A set of benchmarks for Handwritten Text Recognition on historical documents
Dutta et al. Improving CNN-RNN Hybrid Networks for Handwriting Recognition

U.-V. Marti, H. Bunke The IAM-database: an English sentence database for offline handwriting recognition

https://github.com/Holmeyoung/crnn-pytorch
https://github.com/georgeretsi/HTR-ctc
Synthetic line generator : https://github.com/monniert/docExtractor (see paper for more information)

5. Contact

If you have questions or remarks about this project, please email us at [email protected] and [email protected].

1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

SIIM-COVID19-Detection Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge. 1.INSTALLATION Ubuntu 18.04.5 LTS CUD

Nguyen Ba Dung 170 Dec 21, 2022
Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

RaVAEn The RaVÆn system We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variationa

SpaceML 35 Jan 05, 2023
Scene text recognition

AttentionOCR for Arbitrary-Shaped Scene Text Recognition Introduction This is the ranked No.1 tensorflow based scene text spotting algorithm on ICDAR2

777 Jan 09, 2023
原神风花节自动弹琴辅助

GenshinAutoPlayBalladsofBreeze 原神风花节自动弹琴辅助(已适配1920*1080分辨率) 本程序基于opencv图像识别技术,不存在任何封号。 因为正确率取决于你的cpu性能,10900k都不一定全对。 由于图像识别存在误差,根本无法确定出错时间。更不用说被检测到了。

晓轩 20 Oct 27, 2022
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
A tool to make dumpy among us GIFS

Among Us Dumpy Gif Maker Made by ThatOneCalculator & Pixer415 With help from Telk, karl-police, and auguwu! Please credit this repository when you use

Kainoa Kanter 535 Jan 07, 2023
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
Using python libraries to track hands

Python-HandTracking Using python libraries to track hands on a camera Uses cv2 and mediapipe libraries custom hand tracking module PyCharm IDE Final E

Martin Matsudaira 1 Dec 17, 2021
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Papers, Datasets, Algorithms, SOTA for STR. Long-time Maintaining

Scene Text Recognition Recommendations Everythin about Scene Text Recognition SOTA • Papers • Datasets • Code Contents 1. Papers 2. Datasets 2.1 Synth

Deep Learning and Vision Computing Lab, SCUT 197 Jan 05, 2023
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network

text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be

Shaohui Ruan 3.3k Dec 30, 2022
A dataset handling library for computer vision datasets in LOST-fromat

A dataset handling library for computer vision datasets in LOST-fromat

8 Dec 15, 2022
A python program to block out your face

Readme This is a small program I threw together in about 6 hours to block out your face. It probably doesn't work very well, so be warned. By default,

1 Oct 17, 2021
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
Read Japanese manga inside browser with selectable text.

mokuro Read Japanese manga with selectable text inside a browser. See demo: https://kha-white.github.io/manga-demo mokuro_demo.mp4 Demo contains excer

Maciej Budyś 170 Dec 27, 2022
A tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background.

EasyLaMa (WIP) This is a tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background. Installation For GP

3 Sep 17, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022