DeLiGAN - This project is an implementation of the Generative Adversarial Network

Overview

DeLiGAN

alt text

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data. Via this project, we make two contributions:

  1. We propose a simple but effective modification of the GAN framework for settings where training data is diverse yet small in size.
  2. We propose a modification of inception-score proposed by Salimans et al. Our modified inception-score provides a single, unified measure of inter-class and intra-class variety in samples generated by a GAN.

Dependencies

The code for DeLiGAN is provided in Tensorflow 0.10 for the MNIST and Toy dataset, and in Theano 0.8.2 + Lasagne 0.2 for the CIFAR-10 and Sketches dataset. This code was tested on a Ubuntu 14.04 workstation hosting a NVIDIA Titan X GPU.

Datasets

This repository includes implementations for 4 different datasets.

  1. Toy (self generated unimodal and bimodal gaussians)
  2. MNIST (http://www.cs.toronto.edu/~gdahl/mnist.npz.gz)
  3. CIFAR-10 (https://www.cs.toronto.edu/~kriz/cifar.html)
  4. Sketches (http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/)

The models for evaluating DeLiGAN on these datasets can be found in our repo. The details for how to download and lay out the datasets can be found in src/datasets/README.md

Usage

Training DeLiGAN models

To run any of the models

  • First download the datasets and store them in the respective sub-folder of the datasets folder (src/datasets/)
  • To run the model on any of the datasets, go to the respective src folders and run the dg_'dataset'.py file in the respective dataset folders with two arguments namely, --data_dir and --results_dir. For example, starting from the top-level folder,
cd src/sketches 
python dg_sketches.py --data_dir ../datasets/sketches/ --results_dir ../results/sketches
  • Note that the results_dir needs to have 'train' as a sub-folder.

Modified inception score

For example, to obtain the modified inception scores on CIFAR

  • Download the inception-v3 model (http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz.) and store it in src/modified_inception_scores/cifar10/
  • Generate samples using the model trained in the dg_cifar.py and copy it to src/modified_inception_scores/cifar10/
  • Run transfer_cifar10_softmax_b1.py to transfer learn the last layer.
  • Perform the modifications detailed in the comments in transfer_cifar10_softmax_b1.py and re-run it to evaluate the inception scores.
  • The provided code can be modified slightly to work for sketches as well by following the comments provided in transfer_cifar10_softmax_b1.py

Parts of the code in this implementation have been borrowed from the Improved-GAN implementation by OpenAI (T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. In Advances in Neural Information Processing Systems, pages 2226–2234, 2016.)

Cite

@inproceedings{DeLiGAN17,
  author = {Gurumurthy, Swaminathan and Sarvadevabhatla, Ravi Kiran and R. Venkatesh Babu},
  title = {DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data},
  booktitle = {Proceedings of the 2017 Conference on Computer Vision and Pattern Recognition},
  location = {Honolulu, Hawaii, USA}
 }

Q&A

Please send message to [email protected] if you have any query regarding the code.

Owner
Video Analytics Lab -- IISc
Developing intelligent systems for semantic understanding of image/video content.
Video Analytics Lab -- IISc
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of gi

Yasunori Shimura 8 Apr 11, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023