DeLiGAN - This project is an implementation of the Generative Adversarial Network

Overview

DeLiGAN

alt text

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data. Via this project, we make two contributions:

  1. We propose a simple but effective modification of the GAN framework for settings where training data is diverse yet small in size.
  2. We propose a modification of inception-score proposed by Salimans et al. Our modified inception-score provides a single, unified measure of inter-class and intra-class variety in samples generated by a GAN.

Dependencies

The code for DeLiGAN is provided in Tensorflow 0.10 for the MNIST and Toy dataset, and in Theano 0.8.2 + Lasagne 0.2 for the CIFAR-10 and Sketches dataset. This code was tested on a Ubuntu 14.04 workstation hosting a NVIDIA Titan X GPU.

Datasets

This repository includes implementations for 4 different datasets.

  1. Toy (self generated unimodal and bimodal gaussians)
  2. MNIST (http://www.cs.toronto.edu/~gdahl/mnist.npz.gz)
  3. CIFAR-10 (https://www.cs.toronto.edu/~kriz/cifar.html)
  4. Sketches (http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/)

The models for evaluating DeLiGAN on these datasets can be found in our repo. The details for how to download and lay out the datasets can be found in src/datasets/README.md

Usage

Training DeLiGAN models

To run any of the models

  • First download the datasets and store them in the respective sub-folder of the datasets folder (src/datasets/)
  • To run the model on any of the datasets, go to the respective src folders and run the dg_'dataset'.py file in the respective dataset folders with two arguments namely, --data_dir and --results_dir. For example, starting from the top-level folder,
cd src/sketches 
python dg_sketches.py --data_dir ../datasets/sketches/ --results_dir ../results/sketches
  • Note that the results_dir needs to have 'train' as a sub-folder.

Modified inception score

For example, to obtain the modified inception scores on CIFAR

  • Download the inception-v3 model (http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz.) and store it in src/modified_inception_scores/cifar10/
  • Generate samples using the model trained in the dg_cifar.py and copy it to src/modified_inception_scores/cifar10/
  • Run transfer_cifar10_softmax_b1.py to transfer learn the last layer.
  • Perform the modifications detailed in the comments in transfer_cifar10_softmax_b1.py and re-run it to evaluate the inception scores.
  • The provided code can be modified slightly to work for sketches as well by following the comments provided in transfer_cifar10_softmax_b1.py

Parts of the code in this implementation have been borrowed from the Improved-GAN implementation by OpenAI (T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. In Advances in Neural Information Processing Systems, pages 2226–2234, 2016.)

Cite

@inproceedings{DeLiGAN17,
  author = {Gurumurthy, Swaminathan and Sarvadevabhatla, Ravi Kiran and R. Venkatesh Babu},
  title = {DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data},
  booktitle = {Proceedings of the 2017 Conference on Computer Vision and Pattern Recognition},
  location = {Honolulu, Hawaii, USA}
 }

Q&A

Please send message to [email protected] if you have any query regarding the code.

Owner
Video Analytics Lab -- IISc
Developing intelligent systems for semantic understanding of image/video content.
Video Analytics Lab -- IISc
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022