Videocaptioning.pytorch - A simple implementation of video captioning

Overview

pytorch implementation of video captioning

recommend installing pytorch and python packages using Anaconda

This code is based on video-caption.pytorch

requirements (my environment, other versions of pytorch and torchvision should also support this code (not been verified!))

  • cuda
  • pytorch 1.7.1
  • torchvision 0.8.2
  • python 3
  • ffmpeg (can install using anaconda)

python packages

  • tqdm
  • pillow
  • nltk

Data

MSR-VTT. Download and put them in ./data/msr-vtt-data directory

|-data
  |-msr-vtt-data
    |-train-video
    |-test-video
    |-annotations
      |-train_val_videodatainfo.json
      |-test_videodatainfo.json

MSVD. Download and put them in ./data/msvd-data directory

|-data
  |-msvd-data
    |-YouTubeClips
    |-annotations
      |-AllVideoDescriptions.txt

Options

all default options are defined in opt.py or corresponding code file, change them for your like.

Acknowledgements

Some code refers to ImageCaptioning.pytorch

Usage

(Optional) c3d features (not verified)

you can use video-classification-3d-cnn-pytorch to extract features from video.

Steps

  1. preprocess MSVD annotations (convert txt file to json file)

refer to data/msvd-data/annotations/prepro_annotations.ipynb

  1. preprocess videos and labels
# For MSR-VTT dataset
# Train and Validata set
CUDA_VISIBLE_DEVICES=0 python prepro_feats.py \
    --video_path ./data/msr-vtt-data/train-video \
    --video_suffix mp4 \
    --output_dir ./data/msr-vtt-data/resnet152 \
    --model resnet152 \
    --n_frame_steps 40

# Test set
CUDA_VISIBLE_DEVICES=0 python prepro_feats.py \
    --video_path ./data/msr-vtt-data/test-video \
    --video_suffix mp4 \
    --output_dir ./data/msr-vtt-data/resnet152 \
    --model resnet152 \
    --n_frame_steps 40

python prepro_vocab.py \
    --input_json data/msr-vtt-data/annotations/train_val_videodatainfo.json data/msr-vtt-data/annotations/test_videodatainfo.json \
    --info_json data/msr-vtt-data/info.json \
    --caption_json data/msr-vtt-data/caption.json \
    --word_count_threshold 4

# For MSVD dataset
CUDA_VISIBLE_DEVICES=0 python prepro_feats.py \
    --video_path ./data/msvd-data/YouTubeClips \
    --video_suffix avi \
    --output_dir ./data/msvd-data/resnet152 \
    --model resnet152 \
    --n_frame_steps 40

python prepro_vocab.py \
    --input_json data/msvd-data/annotations/MSVD_annotations.json \
    --info_json data/msvd-data/info.json \
    --caption_json data/msvd-data/caption.json \
    --word_count_threshold 2
  1. Training a model
# For MSR-VTT dataset
CUDA_VISIBLE_DEVICES=0 python train.py \
    --epochs 1000 \
    --batch_size 300 \
    --checkpoint_path data/msr-vtt-data/save \
    --input_json data/msr-vtt-data/annotations/train_val_videodatainfo.json \
    --info_json data/msr-vtt-data/info.json \
    --caption_json data/msr-vtt-data/caption.json \
    --feats_dir data/msr-vtt-data/resnet152 \
    --model S2VTAttModel \
    --with_c3d 0 \
    --dim_vid 2048

# For MSVD dataset
CUDA_VISIBLE_DEVICES=0 python train.py \
    --epochs 1000 \
    --batch_size 300 \
    --checkpoint_path data/msvd-data/save \
    --input_json data/msvd-data/annotations/train_val_videodatainfo.json \
    --info_json data/msvd-data/info.json \
    --caption_json data/msvd-data/caption.json \
    --feats_dir data/msvd-data/resnet152 \
    --model S2VTAttModel \
    --with_c3d 0 \
    --dim_vid 2048
  1. test

    opt_info.json will be in same directory as saved model.

# For MSR-VTT dataset
CUDA_VISIBLE_DEVICES=0 python eval.py \
    --input_json data/msr-vtt-data/annotations/test_videodatainfo.json \
    --recover_opt data/msr-vtt-data/save/opt_info.json \
    --saved_model data/msr-vtt-data/save/model_xxx.pth \
    --batch_size 100

# For MSVD dataset
CUDA_VISIBLE_DEVICES=0 python eval.py \
    --input_json data/msvd-data/annotations/test_videodatainfo.json \
    --recover_opt data/msvd-data/save/opt_info.json \
    --saved_model data/msvd-data/save/model_xxx.pth \
    --batch_size 100

NOTE

This code is just a simple implementation of video captioning. And I have not verify whether the SCST training process and C3D feature are useful!

Acknowledgements

Some code refers to ImageCaptioning.pytorch

Owner
Yiyu Wang
Yiyu Wang
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022