Linear programming solver for paper-reviewer matching and mind-matching

Overview

Paper-Reviewer Matcher

A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is implemented based on this article). This package solves problem of assigning paper to reviewers with constrains by solving linear programming problem. We minimize global distance between papers and reviewers in topic space (e.g. topic modeling can be Principal component, Latent Semantic Analysis (LSA), etc.).

Here is a diagram of problem setup and how we solve the problem.

Mind-Match Command Line

Mind-Match is a session we run at Cognitive Computational Neuroscience (CCN) conference. We use a combination of topic modeling and linear programming to solve optimal matching problem. To run example Mind-Match algorithm on sample of 500 people, you can clone the repository and run the following

python mindmatch.py data/mindmatch_example.csv --n_match=6 --n_trim=50

in the root of this repo. This should produce a matching output output_match.csv in this relative location. However, when people get much larger this script takes quite a long time to run. We use pre-cluster into groups before running the mind-matching to make the script runs faster. Below is an example script for pre-clustering and mind-matching on all data:

python mindmatch_cluster.py data/mindmatch_example.csv --n_match=6 --n_trim=50 --n_clusters=4

Example script for the conferences

Here, I include a recent scripts for our Mind Matching session for CCN conference.

  • ccn_mind_matching_2019.py contains script for Mind Matching session (match scientists to scientists) for CCN conference
  • ccn_paper_reviewer_matching.py contains script for matching publications to reviewers for CCN conference, see example of CSV files in data folder

The code makes the distance metric of topics between incoming papers with reviewers (for ccn_paper_reviewer_matching.py) and between people with people (for ccn_mind_matching_2019). We trim the metric so that the problem is not too big to solve using or-tools. It then solves linear programming problem to assign the best matches which minimize the global distance between papers to reviewers. After that, we make the output that can be used by the organizers of the CCN conference -- pairs of paper and reviewers or mind-matching schedule between people to people in the conference. You can see of how it works below.

Dependencies

Use pip to install dependencies

pip install -r requirements.txt

Please see Stackoverflow if you have a problem installing or-tools on MacOS. You can use pip to install protobuf before installing or-tools

pip install protobuf==3.0.0b4
pip install ortools

for Python 3.6,

pip install --user --upgrade ortools

Citations

If you use Paper-Reviewer Matcher in your work or conference, please cite us as follows

@misc{achakulvisut2018,
    author = {Achakulvisut, Titipat and Acuna, Daniel E. and Kording, Konrad},
    title = {Paper-Reviewer Matcher},
    year = {2018},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/titipata/paper-reviewer-matcher}},
    commit = {9d346ee008e2789d34034c2b330b6ba483537674}
}

Members

Owner
Titipat Achakulvisut
Science of Science & Applied NLP | Mahidol University | Former @KordingLab, University of Pennsylvania, and intern @allenai, organizer/co-founder of neuromatch.
Titipat Achakulvisut
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

xcfeng 39 Dec 14, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
Text preprocessing, representation and visualization from zero to hero.

Text preprocessing, representation and visualization from zero to hero. From zero to hero • Installation • Getting Started • Examples • API • FAQ • Co

Jonathan Besomi 2.7k Jan 08, 2023
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
đź’Ą Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Hugging Face 6.2k Dec 31, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.

Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a

Aymen Berriche 8 Apr 13, 2022
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
Pipelines de datos, 2021.

Este repo ilustra un proceso sencillo de automatización de transformación y modelado de datos, a través de un pipeline utilizando Luigi. Stack princip

Rodolfo Ferro 8 May 19, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022