This project shows how to serve an ONNX-optimized image classification model as a web service with FastAPI, Docker, and Kubernetes.

Overview

Deploying ML models with FastAPI, Docker, and Kubernetes

By: Sayak Paul and Chansung Park

This project shows how to serve an ONNX-optimized image classification model as a RESTful web service with FastAPI, Docker, and Kubernetes (k8s). The idea is to first Dockerize the API and then deploy it on a k8s cluster running on Google Kubernetes Engine (GKE). We do this integration using GitHub Actions.

👋 Note: Even though this project uses an image classification its structure and techniques can be used to serve other models as well.

Deploying the model as a service with k8s

  • We decouple the model optimization part from our API code. The optimization part is available within the notebooks/TF_to_ONNX.ipynb notebook.

  • Then we locally test the API. You can find the instructions within the api directory.

  • To deploy the API, we define our deployment.yaml workflow file inside .github/workflows. It does the following tasks:

    • Looks for any changes in the specified directory. If there are any changes:
    • Builds and pushes the latest Docker image to Google Container Register (GCR).
    • Deploys the Docker container on the k8s cluster running on GKE.

Configurations needed beforehand

  • Create a k8s cluster on GKE. Here's a relevant resource.

  • Create a service account key (JSON) file. It's a good practice to only grant it the roles required for the project. For example, for this project, we created a fresh service account and granted it permissions for the following: Storage Admin, GKE Developer, and GCR Developer.

  • Crete a secret named GCP_CREDENTIALS on your GitHub repository and copy paste the contents of the service account key file into the secret.

  • Configure bucket storage related permissions for the service account:

    $ export PROJECT_ID=<PROJECT_ID>
    $ export ACCOUNT=<ACCOUNT>
    
    $ gcloud -q projects add-iam-policy-binding ${PROJECT_ID} \
        --member=serviceAccount:${ACCOUNT}@${PROJECT_ID}.iam.gserviceaccount.com \
        --role roles/storage.admin
    
    $ gcloud -q projects add-iam-policy-binding ${PROJECT_ID} \
        --member=serviceAccount:${ACCOUNT}@${PROJECT_ID}.iam.gserviceaccount.com \
        --role roles/storage.objectAdmin
    
    gcloud -q projects add-iam-policy-binding ${PROJECT_ID} \
        --member=serviceAccount:${ACCOUNT}@${PROJECT_ID}.iam.gserviceaccount.com \
        --role roles/storage.objectCreator
  • If you're on the main branch already then upon a new push, the worflow defined in .github/workflows/deployment.yaml should automatically run. Here's how the final outputs should look like so (run link):

Notes

  • Since we use CPU-based pods within the k8s cluster, we use ONNX optimizations since they are known to provide performance speed-ups for CPU-based environments. If you are using GPU-based pods then look into TensorRT.
  • We use Kustomize to manage the deployment on k8s.

Querying the API endpoint

From workflow outputs, you should see something like so:

NAME             TYPE           CLUSTER-IP     EXTERNAL-IP     PORT(S)        AGE
fastapi-server   LoadBalancer   xxxxxxxxxx   xxxxxxxxxx        80:30768/TCP   23m
kubernetes       ClusterIP      xxxxxxxxxx     <none>          443/TCP        160m

Note the EXTERNAL-IP corresponding to fastapi-server (iff you have named your service like so). Then cURL it:

curl -X POST -F [email protected] -F with_resize=True -F with_post_process=True http://{EXTERNAL-IP}:80/predict/image

You should get the following output (if you're using the cat.jpg image present in the api directory):

"{\"Label\": \"tabby\", \"Score\": \"0.538\"}"

The request assumes that you have a file called cat.jpg present in your working directory.

TODO (s)

  • Set up logging for the k8s pods.
  • Find a better way to report the latest API endpoint.

Acknowledgements

ML-GDE program for providing GCP credit support.

Comments
  • Feat/locust grpc

    Feat/locust grpc

    @deep-diver currently, the load test runs into:

    Screenshot 2022-04-02 at 10 54 26 AM

    I have ensured https://github.com/sayakpaul/ml-deployment-k8s-fastapi/blob/feat/locust-grpc/locust/grpc/locustfile.py#L49 returns the correct output. But after a few requests, I run into the above problem.

    Also, I should mention that the gRPC client currently does not take care of image resizing which makes it a bit less comparable to the REST client which handles preprocessing as well postprocessing.

    opened by sayakpaul 18
  • Setup TF Serving based deployment

    Setup TF Serving based deployment

    In this new feature, the following works are expected

    • Update the notebook Create a new notebook with the TF Serving prototype based on both gRPC(Ref) and RestAPI(Ref).

    • Update the notebook Update the newly created notebook to check the %%timeit on the TF Serving server locally.

    • Build/Commit docker image based on TF Serving base image using this method.

    • Deploy the built docker image on GKE cluster

    • Check the deployed model's performance with a various scenarios (maybe the same ones applied to ONNX+FastAPI scenarios)

    new feature 
    opened by deep-diver 11
  • Perform load testing with Locust

    Perform load testing with Locust

    Resources:

    • https://towardsdatascience.com/performance-testing-an-ml-serving-api-with-locust-ecd98ab9b7f7
    • https://microsoft.github.io/PartsUnlimitedMRP/pandp/200.1x-PandP-LocustTest.html
    • https://github.com/https-deeplearning-ai/machine-learning-engineering-for-production-public/tree/main/course4/week2-ungraded-labs/C4_W2_Lab_3_Latency_Test_Compose
    opened by sayakpaul 10
  • 4 dockerize

    4 dockerize

    fix

    • move api/utils/requirements.txt to /api
    • add missing dependency python-multipart to the requirements.txt

    add

    • Dockerfile

    Closes https://github.com/sayakpaul/ml-deployment-k8s-fastapi/issues/4

    opened by deep-diver 4
  • Deployment on GKE with GitHub Actions

    Deployment on GKE with GitHub Actions

    Closes https://github.com/sayakpaul/ml-deployment-k8s-fastapi/issues/5, https://github.com/sayakpaul/ml-deployment-k8s-fastapi/issues/7, and https://github.com/sayakpaul/ml-deployment-k8s-fastapi/issues/6.

    opened by sayakpaul 2
  • chore: refactored the colab notebook.

    chore: refactored the colab notebook.

    Just added a text cell explaining why it's better to include the preprocessing function in the final exported model. Also, added a cell to show if the TF and ONNX outputs match with np.testing.assert_allclose().

    opened by sayakpaul 2
Owner
Sayak Paul
ML Engineer at @carted | One PR at a time
Sayak Paul
This code generator creates FastAPI app from an openapi file.

fastapi-code-generator This code generator creates FastAPI app from an openapi file. This project is an experimental phase. fastapi-code-generator use

Koudai Aono 632 Jan 05, 2023
An extension library for FastAPI framework

FastLab An extension library for FastAPI framework Features Logging Models Utils Routers Installation use pip to install the package: pip install fast

Tezign Lab 10 Jul 11, 2022
Пример использования GraphQL Ariadne с FastAPI и сравнение его с GraphQL Graphene FastAPI

FastAPI Ariadne Example Пример использования GraphQL Ariadne с FastAPI и сравнение его с GraphQL Graphene FastAPI - GitHub ###Запуск на локальном окру

ZeBrains Team 9 Nov 10, 2022
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

Triax Technologies 558 Jan 07, 2023
Slack webhooks API served by FastAPI

Slackers Slack webhooks API served by FastAPI What is Slackers Slackers is a FastAPI implementation to handle Slack interactions and events. It serves

Niels van Huijstee 68 Jan 05, 2023
SuperSaaSFastAPI - Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAPI, Vue.js & Tailwind

Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAP

Rudy Bekker 31 Jan 10, 2023
A rate limiter for Starlette and FastAPI

SlowApi A rate limiting library for Starlette and FastAPI adapted from flask-limiter. Note: this is alpha quality code still, the API may change, and

Laurent Savaete 562 Jan 01, 2023
Simple FastAPI Example : Blog API using FastAPI : Beginner Friendly

fastapi_blog FastAPI : Simple Blog API with CRUD operation Steps to run the project: git clone https://github.com/mrAvi07/fastapi_blog.git cd fastapi-

Avinash Alanjkar 1 Oct 08, 2022
High-performance Async REST API, in Python. FastAPI + GINO + Arq + Uvicorn (w/ Redis and PostgreSQL).

fastapi-gino-arq-uvicorn High-performance Async REST API, in Python. FastAPI + GINO + Arq + Uvicorn (powered by Redis & PostgreSQL). Contents Get Star

Leo Sussan 351 Jan 04, 2023
Adds integration of the Chameleon template language to FastAPI.

fastapi-chameleon Adds integration of the Chameleon template language to FastAPI. If you are interested in Jinja instead, see the sister project: gith

Michael Kennedy 124 Nov 26, 2022
Opentracing support for Starlette and FastApi

Starlette-OpenTracing OpenTracing support for Starlette and FastApi. Inspired by: Flask-OpenTracing OpenTracing implementations exist for major distri

Rene Dohmen 63 Dec 30, 2022
Instrument your FastAPI app

Prometheus FastAPI Instrumentator A configurable and modular Prometheus Instrumentator for your FastAPI. Install prometheus-fastapi-instrumentator fro

Tim Schwenke 441 Jan 05, 2023
Town / City geolocations with FastAPI & Mongo

geolocations-api United Kingdom Town / City geolocations with FastAPI & Mongo Build container To build a custom image or extend the api run the follow

Joe Gasewicz 3 Jan 26, 2022
Cookiecutter API for creating Custom Skills for Azure Search using Python and Docker

cookiecutter-spacy-fastapi Python cookiecutter API for quick deployments of spaCy models with FastAPI Azure Search The API interface is compatible wit

Microsoft 379 Jan 03, 2023
Complete Fundamental to Expert Codes of FastAPI for creating API's

FastAPI FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3 based on standard Python type hints. The key featu

Pranav Anand 1 Nov 28, 2021
Voucher FastAPI

Voucher-API Requirement Docker Installed on system Libraries Pandas Psycopg2 FastAPI PyArrow Pydantic Uvicorn How to run Download the repo on your sys

Hassan Munir 1 Jan 26, 2022
Easily integrate socket.io with your FastAPI app 🚀

fastapi-socketio Easly integrate socket.io with your FastAPI app. Installation Install this plugin using pip: $ pip install fastapi-socketio Usage To

Srdjan Stankovic 210 Dec 23, 2022
Drop-in MessagePack support for ASGI applications and frameworks

msgpack-asgi msgpack-asgi allows you to add automatic MessagePack content negotiation to ASGI applications (Starlette, FastAPI, Quart, etc.), with a s

Florimond Manca 128 Jan 02, 2023
This is an API developed in python with the FastApi framework and putting into practice the recommendations of the book Clean Architecture in Python by Leonardo Giordani,

This is an API developed in python with the FastApi framework and putting into practice the recommendations of the book Clean Architecture in Python by Leonardo Giordani,

0 Sep 24, 2022
A rate limiter for Starlette and FastAPI

SlowApi A rate limiting library for Starlette and FastAPI adapted from flask-limiter. Note: this is alpha quality code still, the API may change, and

Laurent Savaete 562 Jan 01, 2023