Cache-house - Caching tool for python, working with Redis single instance and Redis cluster mode

Overview

Caching tool for python, working with Redis single instance and Redis cluster mode

PyPi link

Installation

 $ pip install cache-house 

or with poetry

poetry add cache-house

Quick Start


cache decorator work with async and sync functions

from cache_house.backends.redis_backend import RedisCache
from cache_house.cache import cache
import asyncio

RedisCache.init()

@cache() # default expire time is 180 seconds
async def test_cache(a: int,b: int):
    print("async cached")
    return [a,b]

@cache()
def test_cache_1(a: int, b: int):
    print("cached")
    return [a, b]


if __name__ == "__main__":
    print(test_cache_1(3,4))
    print(asyncio.run(test_cache(1,2)))

Check stored cache key

➜ $ rdcli KEYS "*"
1) cachehouse:main:8f65aed1010f0062a783c83eb430aca0
2) cachehouse:main:f665833ea64e4fc32653df794257ca06

Setup Redis cache instance


You can pass all redis-py arguments to RedisCache.init method and additional arguments :

def RedisCache.init(
        host: str = "localhost",
        port: int = 6379,
        encoder: Callable[..., Any] = ...,
        decoder: Callable[..., Any] = ...,
        namespace: str = ...,
        key_prefix: str = ...,
        key_builder: Callable[..., Any] = ...,
        password: str = ...,
        db: int = ...,
        **kwargs
    )

or you can set your own encoder and decoder functions

from cache_house.backends.redis_backend import RedisCache

def custom_encoder(data):
    return json.dumps(data)

def custom_decoder(data):
    return json.loads(data)

RedisCache.init(encoder=custom_encoder, decoder=custom_decoder)

Default encoder and decoder is pickle module.


Setup Redis Cluster cache instance


All manipulation with RedisCache same with a RedisClusterCache

from cache_house.backends.redis_cluster_backend import RedisClusterCache
from cache_house.cache import cache

RedisClusterCache.init()

@cache()
async def test_cache(a: int,b: int):
    print("cached")
    return [a,b]
def RedisClusterCache.init(
        cls,
        host="localhost",
        port=6379,
        encoder: Callable[..., Any] = pickle_encoder,
        decoder: Callable[..., Any] = pickle_decoder,
        startup_nodes=None,
        cluster_error_retry_attempts: int = 3,
        require_full_coverage: bool = True,
        skip_full_coverage_check: bool = False,
        reinitialize_steps: int = 10,
        read_from_replicas: bool = False,
        namespace: str = DEFAULT_NAMESPACE,
        key_prefix: str = DEFAULT_PREFIX,
        key_builder: Callable[..., Any] = key_builder,
        **kwargs,
    )

You can set expire time (seconds) , namespace and key prefix in cache decorator


@cache(expire=30, namespace="app", key_prefix="test") 
async def test_cache(a: int,b: int):
    print("cached")
    return [a,b]


if __name__ == "__main__":
    print(asyncio.run(test_cache(1,2)))

Check stored cache

rdcli KEYS "*"
1) test:app:f665833ea64e4fc32653df794257ca06

If your function works with non-standard data types, you can pass custom encoder and decoder functions to the cache decorator.


import asyncio
import json
from cache_house.backends.redis_backend import RedisCache
from cache_house.cache import cache

RedisCache.init()

def custom_encoder(data):
    return json.dumps(data)

def custom_decoder(data):
    return json.loads(data)

@cache(expire=30, encoder=custom_encoder, decoder=custom_decoder, namespace="custom")
async def test_cache(a: int, b: int):
    print("async cached")
    return {"a": a, "b": b}


@cache(expire=30)
def test_cache_1(a: int, b: int):
    print("cached")
    return [a, b]


if __name__ == "__main__":
    print(asyncio.run(test_cache(1, 2)))
    print(test_cache_1(3, 4))

Check stored cache

rdcli KEYS "*"
1) cachehouse:main:8f65aed1010f0062a783c83eb430aca0
2) cachehouse:custom:f665833ea64e4fc32653df794257ca06

All examples works fine with Redis Cluster and single Redis instance.


Contributing

Free to open issue and send PR

cache-house supports Python >= 3.7

You might also like...
Qwerkey is a social media platform for connecting and learning more about mechanical keyboards built on React and Redux in the frontend and Flask in the backend on top of a PostgreSQL database.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

A RESTful API for creating and monitoring resource components of a hypothetical build system. Built with FastAPI and pydantic. Complete with testing and CI.
A RESTful API for creating and monitoring resource components of a hypothetical build system. Built with FastAPI and pydantic. Complete with testing and CI.

diskspace-monitor-CRUD Background The build system is part of a large environment with a multitude of different components. Many of the components hav

Cookiecutter API for creating Custom Skills for Azure Search using Python and Docker

cookiecutter-spacy-fastapi Python cookiecutter API for quick deployments of spaCy models with FastAPI Azure Search The API interface is compatible wit

Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.
Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.

Supported tags and respective Dockerfile links python3.8, latest (Dockerfile) python3.7, (Dockerfile) python3.6 (Dockerfile) python3.8-slim (Dockerfil

 Turns your Python functions into microservices with web API, interactive GUI, and more.
Turns your Python functions into microservices with web API, interactive GUI, and more.

Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images.

Mixer -- Is a fixtures replacement. Supported Django, Flask, SqlAlchemy and custom python objects.

The Mixer is a helper to generate instances of Django or SQLAlchemy models. It's useful for testing and fixture replacement. Fast and convenient test-

Beyonic API Python official client library simplified examples using Flask, Django and Fast API.

Beyonic API Python Examples. The beyonic APIs Doc Reference: https://apidocs.beyonic.com/ To start using the Beyonic API Python API, you need to start

API using python and Fastapi framework

Welcome 👋 CFCApi is a API DEVELOPMENT PROJECT UNDER CODE FOR COMMUNITY ! Project Walkthrough 🚀 CFCApi run on Python using FASTapi Framework Docs The

Restful Api developed with Flask using Prometheus and Grafana for monitoring and containerization with Docker :rocket:
Restful Api developed with Flask using Prometheus and Grafana for monitoring and containerization with Docker :rocket:

Hephaestus 🚀 In Greek mythology, Hephaestus was either the son of Zeus and Hera or he was Hera's parthenogenous child. ... As a smithing god, Hephaes

Releases(v0.2.2)
FastAPI Skeleton App to serve machine learning models production-ready.

FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre

268 Jan 01, 2023
Formatting of dates and times in Flask templates using moment.js.

Flask-Moment This extension enhances Jinja2 templates with formatting of dates and times using moment.js. Quick Start Step 1: Initialize the extension

Miguel Grinberg 358 Nov 28, 2022
Toolkit for developing and maintaining ML models

modelkit Python framework for production ML systems. modelkit is a minimalist yet powerful MLOps library for Python, built for people who want to depl

140 Dec 27, 2022
Sample-fastapi - A sample app using Fastapi that you can deploy on App Platform

Getting Started We provide a sample app using Fastapi that you can deploy on App

Erhan BÜTE 2 Jan 17, 2022
A FastAPI Framework for things like Database, Redis, Logging, JWT Authentication and Rate Limits

A FastAPI Framework for things like Database, Redis, Logging, JWT Authentication and Rate Limits Install You can install this Library with: pip instal

Tert0 33 Nov 28, 2022
A Sample App to Demonstrate React Native and FastAPI Integration

React Native - Service Integration with FastAPI Backend. A Sample App to Demonstrate React Native and FastAPI Integration UI Based on NativeBase toolk

YongKi Kim 4 Nov 17, 2022
A RESTful API for creating and monitoring resource components of a hypothetical build system. Built with FastAPI and pydantic. Complete with testing and CI.

diskspace-monitor-CRUD Background The build system is part of a large environment with a multitude of different components. Many of the components hav

Nick Hopewell 67 Dec 14, 2022
Full stack, modern web application generator. Using FastAPI, PostgreSQL as database, Docker, automatic HTTPS and more.

Full Stack FastAPI and PostgreSQL - Base Project Generator Generate a backend and frontend stack using Python, including interactive API documentation

Sebastián Ramírez 10.8k Jan 08, 2023
A Flask extension that enables or disables features based on configuration.

Flask FeatureFlags This is a Flask extension that adds feature flagging to your applications. This lets you turn parts of your site on or off based on

Rachel Greenfield 131 Sep 26, 2022
🐍Pywork is a Yeoman generator to scaffold a Bare-bone Python Application

Pywork python app yeoman generator Yeoman | Npm Pywork | Home PyWork is a Yeoman generator for a basic python-worker project that makes use of Pipenv,

Vu Tran 10 Dec 16, 2022
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

Triax Technologies 558 Jan 07, 2023
Hyperlinks for pydantic models

Hyperlinks for pydantic models In a typical web application relationships between resources are modeled by primary and foreign keys in a database (int

Jaakko Moisio 10 Apr 18, 2022
A minimal Streamlit app showing how to launch and stop a FastAPI process on demand

Simple Streamlit + FastAPI Integration A minimal Streamlit app showing how to launch and stop a FastAPI process on demand. The FastAPI /run route simu

Arvindra 18 Jan 02, 2023
Instrument your FastAPI app

Prometheus FastAPI Instrumentator A configurable and modular Prometheus Instrumentator for your FastAPI. Install prometheus-fastapi-instrumentator fro

Tim Schwenke 441 Jan 05, 2023
Lightning FastAPI

Lightning FastAPI Lightning FastAPI framework, provides boiler plates for FastAPI based on Django Framework Explaination / | │ manage.py │ README.

Rajesh Joshi 1 Oct 15, 2021
An alternative implement of Imjad API | Imjad API 的开源替代

HibiAPI An alternative implement of Imjad API. Imjad API 的开源替代. 前言 由于Imjad API这是什么?使用人数过多, 致使调用超出限制, 所以本人希望提供一个开源替代来供社区进行自由的部署和使用, 从而减轻一部分该API的使用压力 优势

Mix Technology 450 Dec 29, 2022
A FastAPI WebSocket application that makes use of ncellapp package by @hemantapkh

ncellFastAPI author: @awebisam Used FastAPI to create WS application. Ncellapp module by @hemantapkh NOTE: Not following best practices and, needs ref

Aashish Bhandari 7 Oct 01, 2021
A dynamic FastAPI router that automatically creates CRUD routes for your models

⚡ Create CRUD routes with lighting speed ⚡ A dynamic FastAPI router that automatically creates CRUD routes for your models

Adam Watkins 950 Jan 08, 2023
FastAPI Socket.io with first-class documentation using AsyncAPI

fastapi-sio Socket.io FastAPI integration library with first-class documentation using AsyncAPI The usage of the library is very familiar to the exper

Marián Hlaváč 9 Jan 02, 2023
Utils for fastapi based services.

Installation pip install fastapi-serviceutils Usage For more details and usage see: readthedocs Development Getting started After cloning the repo

Simon Kallfass 31 Nov 25, 2022