Repository for the Demo of using DVC with PyCaret & MLOps (DVC Office Hours - 20th Jan, 2022)

Overview

Using DVC with PyCaret & FastAPI (Demo)

This repo contains all the resources for my demo explaining how to use DVC along with other interesting tools & frameworks like PyCaret & FastAPI for data & model versioning, experimentation with ML models & finally deploying these models quickly for inferencing.

This demo was presented at the DVC Office Hours on 20th Jan 2022.

Note: We will use Azure Blob Storage as our remote storage for this demo. To follow along, it is advised to either create an Azure account or use a different remote for storage.


Steps Followed for the Demo

0. Preliminaries

Create a virtual environment named dvc-demo & install required packages

python3 -m venv dvc-demo
source dvc-demo/bin/activate

pip install dvc[azure] pycaret fastapi uvicorn python-multipart

Initialize the repo with DVC tracking & create a data/ folder

mkdir dvc-pycaret-fastapi-demo
cd dvc-pycaret-fastapi-demo
git init
dvc init

git remote add origin https://github.com/tezansahu/dvc-pycaret-fastapi-demo.git

mkdir data

1. Tracking Data with DVC

We use the Heart Failure Prediction Dataset for this demo.

First, we download the heart.csv file & retain ~800 rows from this file in the data/ folder. (We will use the file with all the rows later - this is to simulate the change/increase in data that an ML workflow sees during its lifetime)

Track this data/heart.csv using DVC

dvc add data/heart.csv
git add data/heart.csv.dvc
git commit -m "add data - phase 1"

2. Setup the Remote for Storing Tracked Data & Models

  • Go to the Azure Portal & create a Storage Account (here, we name it dvcdemo) Creating a Storage Account on Azure

  • Within the storage account, create a Container (here, we name it demo20jan2022)

  • Obtain the Connection String from the storage account as follows: Obtaining the Connection String for a Storage Account on Azure

  • Install the Azure CLI from here & log into Azure from within the terminal using az login

Now, we store the tracked data in Azure:

dvc remote add -d storage azure://demo20jan2022/dvcstore
dvc remote modify --local storage connection_string <connection-string>

dvc push
git push origin main

3. ML Experimentation with PyCaret

Create the notebooks/ folders using mkdir notebook & download the notebooks/experimentation_with_pycaret.ipynb notebook from this repo into this notebooks/ folder.

Track this notebook with Git:

git add notebooks/
git commit -m "add ml training notebook"

Run all the cells mentioned under Phase 1 in the notebook. This involves basics of PyCaret:

  • Setting up a vanilla experiment with setup()
  • Comparing various classification models with compare_models()
  • Evaluating the preformance a model with evaluate_model()
  • Making predictions on the held-out eval data using predict_model()
  • Finalizing the model by training on the full training + eval data using finalize_model()
  • Saving the model pipeline using save_model()

This will create a model.pkl file in the models/ folder

4. Tracking Models with DVC

Now, we track the ML model using DVC & store it in our remote storage

dvc add models/model.pkl
git add models/model.pkl.dvc
git commit -m "add model - phase 1"

dvc push
git push origin main

5. Deploy the Model with FastAPI

First, delete the .dvc/cache/ & models/model.pkl (simulate production env). Then, pull the changes from the DVC remote storage.

dvc pull

Check that the model.pkl file is now present in models/ folder.

Now, create a server/ folder & place the main.py file in it after downloaidng the server/main.py file from this repo. This RESTful API server has 2 POST endpoints:

  • Inferencing on an individual record
  • Batch inferencing on a CSV file

We commit this to our repo:

git add server/
git commit -m "create basic fastapi server"

Now, we can run our local server on port 8000

cd server
uvicorn main:app --port=8000

Go to http://localhost:8000/docs & play with the endpoints present in the interactive documentation.

Swagger Interactive API Documentation for our Server

For the individual inference, you could use teh following data:

{
  "Age": 61,
  "Sex": "M",
  "ChestPainType": "ASY",
  "RestingBP": 148,
  "Cholesterol": 203,
  "FastingBS": 0,
  "RestingECG": "Normal",
  "MaxHR": 161,
  "ExerciseAngina": "N",
  "Oldpeak": 0,
  "ST_Slope": "Up"
}

6. Simulating the arrival of New Data

Now, we use the full heart.csv file to simulate the arrival of new data with time. We place it within data/ folder & upload it to DVC remote.

dvc add data/heart.csv
git add data/heart.csv.dvc
git commit -m "add data - phase 2"

dvc push
git push origin main

7. More Experimentation with PyCaret

Now, we run the experiment in Phase 2 of the notebooks/experimentation_with_pycaret.ipynb notebook. This involves:

  • Feature engineering while setting up teh experient
  • Fine-tuning of models with tune_model()
  • Creating an ensemble of models with blend_models()

The blended model is saved as models/modl.pkl

We upload it to our DVC remote.

dvc add models/model.pkl
git add models/model.pkl.dvc
git commit -m "add model - phase 2"

dvc push
git push origin main

8. Redeploying the New Model using FastAPI

Now, we again start the server (no code changes required, because the model file has same name) & perform inference.

cd server
uvicorn main:app --port=8000

With this, we demonstrate how DVC can be used in conjunction with PyCaret & FastAPI for iterating & experimenting efficiently with ML models & deploying them with minimal effort.


Additional Resources


Created with ❤️ by Tezan Sahu

Owner
Tezan Sahu
Data & Applied Scientist at Microsoft with a keen interest in NLP, Deep Learning, Blockchain Technologies & Data Analytics.
Tezan Sahu
FastAPI-PostgreSQL-Celery-RabbitMQ-Redis bakcend with Docker containerization

FastAPI - PostgreSQL - Celery - Rabbitmq backend This source code implements the following architecture: All the required database endpoints are imple

Juan Esteban Aristizabal 54 Nov 26, 2022
스타트업 개발자 채용

스타트업 개발자 채용 大 박람회 Seed ~ Series B에 있는 스타트업을 위한 채용정보 페이지입니다. Back-end, Frontend, Mobile 등 개발자를 대상으로 진행하고 있습니다. 해당 스타트업에 종사하시는 분뿐만 아니라 채용 관련 정보를 알고 계시다면

JuHyun Lee 58 Dec 14, 2022
SuperSaaSFastAPI - Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAPI, Vue.js & Tailwind

Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAP

Rudy Bekker 31 Jan 10, 2023
Slack webhooks API served by FastAPI

Slackers Slack webhooks API served by FastAPI What is Slackers Slackers is a FastAPI implementation to handle Slack interactions and events. It serves

Niels van Huijstee 68 Jan 05, 2023
FastAPI with async for generating QR codes and bolt11 for Lightning Addresses

sendsats An API for getting QR codes and Bolt11 Invoices from Lightning Addresses. Share anywhere; as a link for tips on a twitter profile, or via mes

Bitkarrot 12 Jan 07, 2023
Complete Fundamental to Expert Codes of FastAPI for creating API's

FastAPI FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3 based on standard Python type hints. The key featu

Pranav Anand 1 Nov 28, 2021
Restful Api developed with Flask using Prometheus and Grafana for monitoring and containerization with Docker :rocket:

Hephaestus 🚀 In Greek mythology, Hephaestus was either the son of Zeus and Hera or he was Hera's parthenogenous child. ... As a smithing god, Hephaes

Yasser Tahiri 16 Oct 07, 2022
Drop-in MessagePack support for ASGI applications and frameworks

msgpack-asgi msgpack-asgi allows you to add automatic MessagePack content negotiation to ASGI applications (Starlette, FastAPI, Quart, etc.), with a s

Florimond Manca 128 Jan 02, 2023
A simple Redis Streams backed Chat app using Websockets, Asyncio and FastAPI/Starlette.

redis-streams-fastapi-chat A simple demo of Redis Streams backed Chat app using Websockets, Python Asyncio and FastAPI/Starlette. Requires Python vers

ludwig404 135 Dec 19, 2022
Cube-CRUD is a simple example of a REST API CRUD in a context of rubik's cube review service.

Cube-CRUD is a simple example of a REST API CRUD in a context of rubik's cube review service. It uses Sqlalchemy ORM to manage the connection and database operations.

Sebastian Andrade 1 Dec 11, 2021
Opinionated set of utilities on top of FastAPI

FastAPI Contrib Opinionated set of utilities on top of FastAPI Free software: MIT license Documentation: https://fastapi-contrib.readthedocs.io. Featu

identix.one 543 Jan 05, 2023
Adds GraphQL support to your Flask application.

Flask-GraphQL Adds GraphQL support to your Flask application. Usage Just use the GraphQLView view from flask_graphql from flask import Flask from flas

GraphQL Python 1.3k Dec 31, 2022
Simple web app example serving a PyTorch model using streamlit and FastAPI

streamlit-fastapi-model-serving Simple example of usage of streamlit and FastAPI for ML model serving described on this blogpost and PyConES 2020 vide

Davide Fiocco 291 Jan 06, 2023
An extension library for FastAPI framework

FastLab An extension library for FastAPI framework Features Logging Models Utils Routers Installation use pip to install the package: pip install fast

Tezign Lab 10 Jul 11, 2022
Code for my FastAPI tutorial

FastAPI tutorial Code for my video tutorial FastAPI tutorial What is FastAPI? FastAPI is a high-performant REST API framework for Python. It's built o

José Haro Peralta 9 Nov 15, 2022
A minimal Streamlit app showing how to launch and stop a FastAPI process on demand

Simple Streamlit + FastAPI Integration A minimal Streamlit app showing how to launch and stop a FastAPI process on demand. The FastAPI /run route simu

Arvindra 18 Jan 02, 2023
A server hosts a FastAPI application and multiple clients can be connected to it via SocketIO.

FastAPI_and_SocketIO A server hosts a FastAPI application and multiple clients can be connected to it via SocketIO. Executing server.py sets up the se

Ankit Rana 2 Mar 04, 2022
REST API with FastAPI and JSON file.

FastAPI RESTAPI with a JSON py 3.10 First, to install all dependencies, in ./src/: python -m pip install -r requirements.txt Second, into the ./src/

Luis Quiñones Requelme 1 Dec 15, 2021
Regex Converter for Flask URL Routes

Flask-Reggie Enable Regex Routes within Flask Installation pip install flask-reggie Configuration To enable regex routes within your application from

Rhys Elsmore 48 Mar 07, 2022
Middleware for Starlette that allows you to store and access the context data of a request. Can be used with logging so logs automatically use request headers such as x-request-id or x-correlation-id.

starlette context Middleware for Starlette that allows you to store and access the context data of a request. Can be used with logging so logs automat

Tomasz Wójcik 300 Dec 26, 2022