Repository for the Demo of using DVC with PyCaret & MLOps (DVC Office Hours - 20th Jan, 2022)

Overview

Using DVC with PyCaret & FastAPI (Demo)

This repo contains all the resources for my demo explaining how to use DVC along with other interesting tools & frameworks like PyCaret & FastAPI for data & model versioning, experimentation with ML models & finally deploying these models quickly for inferencing.

This demo was presented at the DVC Office Hours on 20th Jan 2022.

Note: We will use Azure Blob Storage as our remote storage for this demo. To follow along, it is advised to either create an Azure account or use a different remote for storage.


Steps Followed for the Demo

0. Preliminaries

Create a virtual environment named dvc-demo & install required packages

python3 -m venv dvc-demo
source dvc-demo/bin/activate

pip install dvc[azure] pycaret fastapi uvicorn python-multipart

Initialize the repo with DVC tracking & create a data/ folder

mkdir dvc-pycaret-fastapi-demo
cd dvc-pycaret-fastapi-demo
git init
dvc init

git remote add origin https://github.com/tezansahu/dvc-pycaret-fastapi-demo.git

mkdir data

1. Tracking Data with DVC

We use the Heart Failure Prediction Dataset for this demo.

First, we download the heart.csv file & retain ~800 rows from this file in the data/ folder. (We will use the file with all the rows later - this is to simulate the change/increase in data that an ML workflow sees during its lifetime)

Track this data/heart.csv using DVC

dvc add data/heart.csv
git add data/heart.csv.dvc
git commit -m "add data - phase 1"

2. Setup the Remote for Storing Tracked Data & Models

  • Go to the Azure Portal & create a Storage Account (here, we name it dvcdemo) Creating a Storage Account on Azure

  • Within the storage account, create a Container (here, we name it demo20jan2022)

  • Obtain the Connection String from the storage account as follows: Obtaining the Connection String for a Storage Account on Azure

  • Install the Azure CLI from here & log into Azure from within the terminal using az login

Now, we store the tracked data in Azure:

dvc remote add -d storage azure://demo20jan2022/dvcstore
dvc remote modify --local storage connection_string <connection-string>

dvc push
git push origin main

3. ML Experimentation with PyCaret

Create the notebooks/ folders using mkdir notebook & download the notebooks/experimentation_with_pycaret.ipynb notebook from this repo into this notebooks/ folder.

Track this notebook with Git:

git add notebooks/
git commit -m "add ml training notebook"

Run all the cells mentioned under Phase 1 in the notebook. This involves basics of PyCaret:

  • Setting up a vanilla experiment with setup()
  • Comparing various classification models with compare_models()
  • Evaluating the preformance a model with evaluate_model()
  • Making predictions on the held-out eval data using predict_model()
  • Finalizing the model by training on the full training + eval data using finalize_model()
  • Saving the model pipeline using save_model()

This will create a model.pkl file in the models/ folder

4. Tracking Models with DVC

Now, we track the ML model using DVC & store it in our remote storage

dvc add models/model.pkl
git add models/model.pkl.dvc
git commit -m "add model - phase 1"

dvc push
git push origin main

5. Deploy the Model with FastAPI

First, delete the .dvc/cache/ & models/model.pkl (simulate production env). Then, pull the changes from the DVC remote storage.

dvc pull

Check that the model.pkl file is now present in models/ folder.

Now, create a server/ folder & place the main.py file in it after downloaidng the server/main.py file from this repo. This RESTful API server has 2 POST endpoints:

  • Inferencing on an individual record
  • Batch inferencing on a CSV file

We commit this to our repo:

git add server/
git commit -m "create basic fastapi server"

Now, we can run our local server on port 8000

cd server
uvicorn main:app --port=8000

Go to http://localhost:8000/docs & play with the endpoints present in the interactive documentation.

Swagger Interactive API Documentation for our Server

For the individual inference, you could use teh following data:

{
  "Age": 61,
  "Sex": "M",
  "ChestPainType": "ASY",
  "RestingBP": 148,
  "Cholesterol": 203,
  "FastingBS": 0,
  "RestingECG": "Normal",
  "MaxHR": 161,
  "ExerciseAngina": "N",
  "Oldpeak": 0,
  "ST_Slope": "Up"
}

6. Simulating the arrival of New Data

Now, we use the full heart.csv file to simulate the arrival of new data with time. We place it within data/ folder & upload it to DVC remote.

dvc add data/heart.csv
git add data/heart.csv.dvc
git commit -m "add data - phase 2"

dvc push
git push origin main

7. More Experimentation with PyCaret

Now, we run the experiment in Phase 2 of the notebooks/experimentation_with_pycaret.ipynb notebook. This involves:

  • Feature engineering while setting up teh experient
  • Fine-tuning of models with tune_model()
  • Creating an ensemble of models with blend_models()

The blended model is saved as models/modl.pkl

We upload it to our DVC remote.

dvc add models/model.pkl
git add models/model.pkl.dvc
git commit -m "add model - phase 2"

dvc push
git push origin main

8. Redeploying the New Model using FastAPI

Now, we again start the server (no code changes required, because the model file has same name) & perform inference.

cd server
uvicorn main:app --port=8000

With this, we demonstrate how DVC can be used in conjunction with PyCaret & FastAPI for iterating & experimenting efficiently with ML models & deploying them with minimal effort.


Additional Resources


Created with ❤️ by Tezan Sahu

Owner
Tezan Sahu
Data & Applied Scientist at Microsoft with a keen interest in NLP, Deep Learning, Blockchain Technologies & Data Analytics.
Tezan Sahu
FastAPI Project Template

The base to start an openapi project featuring: SQLModel, Typer, FastAPI, JWT Token Auth, Interactive Shell, Management Commands.

A.Freud 4 Dec 05, 2022
A utility that allows you to use DI in fastapi without Depends()

fastapi-better-di What is this ? fastapi-better-di is a utility that allows you to use DI in fastapi without Depends() Installation pip install fastap

Maxim 9 May 24, 2022
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

Triax Technologies 558 Jan 07, 2023
LuSyringe is a documentation injection tool for your classes when using Fast API

LuSyringe LuSyringe is a documentation injection tool for your classes when using Fast API Benefits The main benefit is being able to separate your bu

Enzo Ferrari 2 Sep 06, 2021
Sample project showing reliable data ingestion application using FastAPI and dramatiq

Create and deploy a reliable data ingestion service with FastAPI, SQLModel and Dramatiq This is the source code for the data ingestion service explain

François Voron 31 Nov 30, 2022
FastAPI IPyKernel Sandbox

FastAPI IPyKernel Sandbox This repository is a light-weight FastAPI project that is meant to provide a wrapper around IPyKernel interactions. It is in

Nick Wold 2 Oct 25, 2021
Keycloack plugin for FastApi.

FastAPI Keycloack Keycloack plugin for FastApi. Your aplication receives the claims decoded from the access token. Usage Run keycloak on port 8080 and

Elber 4 Jun 24, 2022
FastAPI-Amis-Admin is a high-performance, efficient and easily extensible FastAPI admin framework. Inspired by django-admin, and has as many powerful functions as django-admin.

简体中文 | English 项目介绍 FastAPI-Amis-Admin fastapi-amis-admin是一个拥有高性能,高效率,易拓展的fastapi管理后台框架. 启发自Django-Admin,并且拥有不逊色于Django-Admin的强大功能. 源码 · 在线演示 · 文档 · 文

AmisAdmin 318 Dec 31, 2022
Signalling for FastAPI.

fastapi-signals Signalling for FastAPI.

Henshal B 7 May 04, 2022
Reusable utilities for FastAPI

Reusable utilities for FastAPI Documentation: https://fastapi-utils.davidmontague.xyz Source Code: https://github.com/dmontagu/fastapi-utils FastAPI i

David Montague 1.3k Jan 04, 2023
A request rate limiter for fastapi

fastapi-limiter Introduction FastAPI-Limiter is a rate limiting tool for fastapi routes. Requirements redis Install Just install from pypi pip insta

long2ice 200 Jan 08, 2023
Keycloak integration for Python FastAPI

FastAPI Keycloak Integration Documentation Introduction Welcome to fastapi-keycloak. This projects goal is to ease the integration of Keycloak (OpenID

Code Specialist 113 Dec 31, 2022
Minecraft biome tile server writing on Python using FastAPI

Blocktile Minecraft biome tile server writing on Python using FastAPI Usage https://blocktile.herokuapp.com/overworld/{seed}/{zoom}/{col}/{row}.png s

Vladimir 2 Aug 31, 2022
An extension library for FastAPI framework

FastLab An extension library for FastAPI framework Features Logging Models Utils Routers Installation use pip to install the package: pip install fast

Tezign Lab 10 Jul 11, 2022
A simple Redis Streams backed Chat app using Websockets, Asyncio and FastAPI/Starlette.

redis-streams-fastapi-chat A simple demo of Redis Streams backed Chat app using Websockets, Python Asyncio and FastAPI/Starlette. Requires Python vers

ludwig404 135 Dec 19, 2022
Adds integration of the Chameleon template language to FastAPI.

fastapi-chameleon Adds integration of the Chameleon template language to FastAPI. If you are interested in Jinja instead, see the sister project: gith

Michael Kennedy 124 Nov 26, 2022
The template for building scalable web APIs based on FastAPI, Tortoise ORM and other.

FastAPI and Tortoise ORM. Powerful but simple template for web APIs w/ FastAPI (as web framework) and Tortoise-ORM (for working via database without h

prostomarkeloff 95 Jan 08, 2023
Formatting of dates and times in Flask templates using moment.js.

Flask-Moment This extension enhances Jinja2 templates with formatting of dates and times using moment.js. Quick Start Step 1: Initialize the extension

Miguel Grinberg 358 Nov 28, 2022
FastAPI backend for Repost

Repost FastAPI This is the FastAPI implementation of the Repost API. Installation Python 3 must be installed and accessible through the use of a termi

PC 7 Jun 15, 2021
Prometheus integration for Starlette.

Starlette Prometheus Introduction Prometheus integration for Starlette. Requirements Python 3.6+ Starlette 0.9+ Installation $ pip install starlette-p

José Antonio Perdiguero 229 Dec 21, 2022