Tensor-Based Quantum Machine Learning

Overview
https://codecov.io/gh/tensorly/quantum/branch/main/graph/badge.svg?token=5P8GZ8YLO7

TensorLy_Quantum

TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch.

With TensorLy-Quantum, you can easily:

  • Create large quantum circuit: Tensor network formalism requires up to exponentially less memory for quantum simulation than traditional vector and matrix approaches.
  • Leverage tensor methods: the state vectors are efficiently represented in factorized form as Tensor-Rings (MPS) and the operators as TT-Matrices (MPO)
  • Efficient simulation: tensorly-quantum leverages the factorized structure to efficiently perform quantum simulation without ever forming the full, dense operators and state-vectors
  • Multi-Basis Encoding: we provide multi-basis encoding out-of-the-box for scalable experimentation
  • Solve hard problems: we provide all the tools to solve the MaxCut problem for an unprecendented number of qubits / vertices

Installing TensorLy-Quantum

Through pip

pip install tensorly-quantum

From source

git clone https://github.com/tensorly/quantum
cd quantum
pip install -e .
Comments
  • Rz has no gradient issue resolved

    Rz has no gradient issue resolved

    Hey there, The way RotZ was implemented it didn't have any gradient. I fixed the issue by using the same template as for the RotY and RotX. I think the tl.tensor() in the original version somehow blocked the backprop. The way it is written now the gradient is correct.

    opened by PatrickHuembeli 3
  • calculate_cut in the VQE example?

    calculate_cut in the VQE example?

    Hello! I have been trying to use your code to compute the MaxCut in the VQE jupyter notebook provided in the example sections. I tried to apply the calculate_cut function on the state as tlq.calculate_cut(state, qubits1, qubits2, weights) but I am having the following error TypeError: only integer tensors of a single element can be converted to an index.

    I see that the cut is calculated differently in the MBE example, but I would like to know if there is an analogue way of doing it with the VQE. Or should I just adapt my Hamiltonian to maximize the cut? Any help is appreciated, Thanks!

    opened by marionsilv 2
  • How to use cuQuantum as a backend

    How to use cuQuantum as a backend

    Hi,

    Thank you for your great work! May I know how to use cuQuantum as a backend as mentioned in your paper? Could you please provide a code example? How does the cuQuantum backend support autograd? Thank you very much!

    opened by nadbp 1
  • CNOT gate issue

    CNOT gate issue

    Hello,

    I have been trying to build a circuit with a CNOT gate acting on non-contiguous qubits (e.g., qubit 1 and 4), but I am finding strange results.

    For example, if I choose an initial state [1,0,0,0]

    and apply the unitary uni = tlq.Unitary([tlq.CNOTL(device=device, dtype=dtype), tlq.CNOTR(device=device, dtype=dtype), tlq.IDENTITY(dtype=dtype, device=device), tlq.IDENTITY(dtype=dtype, device=device)], nqubits, ncontraq, device=device, dtype=dtype)

    I get (for the expected value of Sz): tensor([-1., -1., 1., 1.])

    However, if I apply the CNOT cores to non-adjacent qubits in the same initial state, with uni = tlq.Unitary([tlq.CNOTL(device=device, dtype=dtype), tlq.IDENTITY(dtype=dtype, device=device), tlq.IDENTITY(dtype=dtype, device=device), tlq.CNOTR(device=device, dtype=dtype)], nqubits, ncontraq, device=device, dtype=dtype)

    I find, again for the expected value of Sz: tensor([-2., 2., 2., 0.])

    Is there any limitation regarding the CNOT cores that make it only valid for adjacent qubits, or am I doing something wrong? I am attaching a file with the full code for running: code.txt

    Thanks for the help, Marion Silvestrini.

    opened by marionsilv 2
  • Hamiltonian unitary

    Hamiltonian unitary

    Hello all,

    I was wondering if there is a way in TensorLy Quantum to build a parametrised unitary based on a binary Hamiltonian, such as the Ising model given in the examples, for use in the circuits.

    I mean to use it in an application like a QAOA, for instance. Is there a way to adapt from the binary_hamiltonian function, or something like that?

    Thanks!

    opened by rafaeleb 10
Releases(0.1.0)
Owner
TensorLy
Tensor Learning in Python.
TensorLy
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022