A collection of SOTA Image Classification Models in PyTorch

Overview

SOTA Image Classification Models in PyTorch

Intended for easy to use and integrate SOTA image classification models into object detection, semantic segmentation, pose estimation, etc.

Open In Colab

visiontransformer

Model Zoo

Model ImageNet-1k Top-1 Acc
(%)
Params
(M)
GFLOPs Variants & Weights
MicroNet 51.4|59.4|62.5 2|2|3 6M|12M|21M M1|M2|M3
MobileFormer 76.7|77.9|79.3 9|11|14 214M|294M|508M 214|294|508
GFNet 80.1|81.5|82.9 15|32|54 2|5|8 T|S|B
PVTv2 78.7|82.0|83.6 14|25|63 2|4|10 B1|B2|B4
ResT 79.6|81.6|83.6 14|30|52 2|4|8 S|B|L
Conformer 81.3|83.4|84.1 24|38|83 5|11|23 T|S|B
Shuffle 82.4|83.6|84.0 28|50|88 5|9|16 T|S|B
CSWin 82.7|83.6|84.2 23|35|78 4|7|15 T|S|B
CycleMLP 81.6|83.0|83.2 27|52|76 4|10|12 B2|B4|B5
HireMLP 81.8|83.1|83.4 33|58|96 4|8|14 S|B|L
sMLP 81.9|83.1|83.4 24|49|66 5|10|14 T|S|B
XCiT 80.4|83.9|84.3 12|48|84 2|9|16 T|S|M
VOLO 84.2|85.2|85.4 27|59|86 7|14|21 D1|D2|D3
Table Notes
  • Image size is 224x224. EfficientNetv2 uses progressive learning (image size from 128 to 380).
  • All models' weights are from official repositories.
  • Only models trained on ImageNet1k are compared.
  • (Parameters > 200M) Models are not included.
  • PVTv2, ResT, Conformer, XCiT and CycleMLP models work with any image size.

Usage

Requirements (click to expand)
  • python >= 3.6
  • torch >= 1.8.1
  • torchvision >= 0.9.1

Other requirements can be installed with pip install -r requirements.txt.


Show Available Models
$ python tools/show.py

A table with model names and variants will be shown:

Model Names    Model Variants
-------------  --------------------------------
ResNet         ['18', '34', '50', '101', '152']
MicroNet       ['M1', 'M2', 'M3']
GFNet          ['T', 'S', 'B']
PVTv2          ['B1', 'B2', 'B3', 'B4', 'B5']
ResT           ['S', 'B', 'L']
Conformer      ['T', 'S', 'B']
Shuffle        ['T', 'S', 'B']
CSWin          ['T', 'S', 'B', 'L']
CycleMLP       ['B1', 'B2', 'B3', 'B4', 'B5']
XciT           ['T', 'S', 'M', 'L']
VOLO           ['D1', 'D2', 'D3', 'D4']
Inference
  • Download your desired model's weights from Model Zoo table.
  • Change MODEL parameters and TEST parameters in config file here. And run the the following command.
$ python tools/infer.py --cfg configs/test.yaml

You will see an output similar to this:

File: assests\dog.jpg >>>>> Golden retriever

Training (click to expand)
$ python tools/train.py --cfg configs/train.yaml

Evaluate (click to expand)
$ python tools/val.py --cfg configs/train.yaml

Fine-tune (click to expand)

Fine-tune on CIFAR-10:

$ python tools/finetune.py --cfg configs/finetune.yaml

References (click to expand)

Citations (click to expand)
@article{zhql2021ResT,
  title={ResT: An Efficient Transformer for Visual Recognition},
  author={Zhang, Qinglong and Yang, Yubin},
  journal={arXiv preprint arXiv:2105.13677v3},
  year={2021}
}

@article{peng2021conformer,
  title={Conformer: Local Features Coupling Global Representations for Visual Recognition}, 
  author={Zhiliang Peng and Wei Huang and Shanzhi Gu and Lingxi Xie and Yaowei Wang and Jianbin Jiao and Qixiang Ye},
  journal={arXiv preprint arXiv:2105.03889},
  year={2021},
}

@misc{dong2021cswin,
  title={CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows}, 
  author={Xiaoyi Dong and Jianmin Bao and Dongdong Chen and Weiming Zhang and Nenghai Yu and Lu Yuan and Dong Chen and Baining Guo},
  year={2021},
  eprint={2107.00652},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{chen2021cyclemlp,
  title={CycleMLP: A MLP-like Architecture for Dense Prediction}, 
  author={Shoufa Chen and Enze Xie and Chongjian Ge and Ding Liang and Ping Luo},
  year={2021},
  eprint={2107.10224},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{wang2021pvtv2,
  title={PVTv2: Improved Baselines with Pyramid Vision Transformer}, 
  author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and Tong Lu and Ping Luo and Ling Shao},
  year={2021},
  eprint={2106.13797},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{elnouby2021xcit,
  title={XCiT: Cross-Covariance Image Transformers}, 
  author={Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Hervé Jegou},
  year={2021},
  eprint={2106.09681},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{yuan2021volo,
  title={VOLO: Vision Outlooker for Visual Recognition}, 
  author={Li Yuan and Qibin Hou and Zihang Jiang and Jiashi Feng and Shuicheng Yan},
  year={2021},
  eprint={2106.13112},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{yan2020micronet,
  title={MicroNet for Efficient Language Modeling}, 
  author={Zhongxia Yan and Hanrui Wang and Demi Guo and Song Han},
  year={2020},
  eprint={2005.07877},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}

@misc{chen2021mobileformer,
  title={Mobile-Former: Bridging MobileNet and Transformer}, 
  author={Yinpeng Chen and Xiyang Dai and Dongdong Chen and Mengchen Liu and Xiaoyi Dong and Lu Yuan and Zicheng Liu},
  year={2021},
  eprint={2108.05895},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@article{rao2021global,
  title={Global Filter Networks for Image Classification},
  author={Rao, Yongming and Zhao, Wenliang and Zhu, Zheng and Lu, Jiwen and Zhou, Jie},
  journal={arXiv preprint arXiv:2107.00645},
  year={2021}
}

@article{huang2021shuffle,
  title={Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer},
  author={Huang, Zilong and Ben, Youcheng and Luo, Guozhong and Cheng, Pei and Yu, Gang and Fu, Bin},
  journal={arXiv preprint arXiv:2106.03650},
  year={2021}
}

You might also like...
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

SOTA model in CIFAR10
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

A toolkit for document-level event extraction, containing some SOTA model implementations
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Collection of generative models in Pytorch version.
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer Implement face detection, and age and gender classification, and emotion classification.
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Releases(v0.2.0)
Owner
sithu3
AI Developer
sithu3
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022