A collection of SOTA Image Classification Models in PyTorch

Overview

SOTA Image Classification Models in PyTorch

Intended for easy to use and integrate SOTA image classification models into object detection, semantic segmentation, pose estimation, etc.

Open In Colab

visiontransformer

Model Zoo

Model ImageNet-1k Top-1 Acc
(%)
Params
(M)
GFLOPs Variants & Weights
MicroNet 51.4|59.4|62.5 2|2|3 6M|12M|21M M1|M2|M3
MobileFormer 76.7|77.9|79.3 9|11|14 214M|294M|508M 214|294|508
GFNet 80.1|81.5|82.9 15|32|54 2|5|8 T|S|B
PVTv2 78.7|82.0|83.6 14|25|63 2|4|10 B1|B2|B4
ResT 79.6|81.6|83.6 14|30|52 2|4|8 S|B|L
Conformer 81.3|83.4|84.1 24|38|83 5|11|23 T|S|B
Shuffle 82.4|83.6|84.0 28|50|88 5|9|16 T|S|B
CSWin 82.7|83.6|84.2 23|35|78 4|7|15 T|S|B
CycleMLP 81.6|83.0|83.2 27|52|76 4|10|12 B2|B4|B5
HireMLP 81.8|83.1|83.4 33|58|96 4|8|14 S|B|L
sMLP 81.9|83.1|83.4 24|49|66 5|10|14 T|S|B
XCiT 80.4|83.9|84.3 12|48|84 2|9|16 T|S|M
VOLO 84.2|85.2|85.4 27|59|86 7|14|21 D1|D2|D3
Table Notes
  • Image size is 224x224. EfficientNetv2 uses progressive learning (image size from 128 to 380).
  • All models' weights are from official repositories.
  • Only models trained on ImageNet1k are compared.
  • (Parameters > 200M) Models are not included.
  • PVTv2, ResT, Conformer, XCiT and CycleMLP models work with any image size.

Usage

Requirements (click to expand)
  • python >= 3.6
  • torch >= 1.8.1
  • torchvision >= 0.9.1

Other requirements can be installed with pip install -r requirements.txt.


Show Available Models
$ python tools/show.py

A table with model names and variants will be shown:

Model Names    Model Variants
-------------  --------------------------------
ResNet         ['18', '34', '50', '101', '152']
MicroNet       ['M1', 'M2', 'M3']
GFNet          ['T', 'S', 'B']
PVTv2          ['B1', 'B2', 'B3', 'B4', 'B5']
ResT           ['S', 'B', 'L']
Conformer      ['T', 'S', 'B']
Shuffle        ['T', 'S', 'B']
CSWin          ['T', 'S', 'B', 'L']
CycleMLP       ['B1', 'B2', 'B3', 'B4', 'B5']
XciT           ['T', 'S', 'M', 'L']
VOLO           ['D1', 'D2', 'D3', 'D4']
Inference
  • Download your desired model's weights from Model Zoo table.
  • Change MODEL parameters and TEST parameters in config file here. And run the the following command.
$ python tools/infer.py --cfg configs/test.yaml

You will see an output similar to this:

File: assests\dog.jpg >>>>> Golden retriever

Training (click to expand)
$ python tools/train.py --cfg configs/train.yaml

Evaluate (click to expand)
$ python tools/val.py --cfg configs/train.yaml

Fine-tune (click to expand)

Fine-tune on CIFAR-10:

$ python tools/finetune.py --cfg configs/finetune.yaml

References (click to expand)

Citations (click to expand)
@article{zhql2021ResT,
  title={ResT: An Efficient Transformer for Visual Recognition},
  author={Zhang, Qinglong and Yang, Yubin},
  journal={arXiv preprint arXiv:2105.13677v3},
  year={2021}
}

@article{peng2021conformer,
  title={Conformer: Local Features Coupling Global Representations for Visual Recognition}, 
  author={Zhiliang Peng and Wei Huang and Shanzhi Gu and Lingxi Xie and Yaowei Wang and Jianbin Jiao and Qixiang Ye},
  journal={arXiv preprint arXiv:2105.03889},
  year={2021},
}

@misc{dong2021cswin,
  title={CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows}, 
  author={Xiaoyi Dong and Jianmin Bao and Dongdong Chen and Weiming Zhang and Nenghai Yu and Lu Yuan and Dong Chen and Baining Guo},
  year={2021},
  eprint={2107.00652},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{chen2021cyclemlp,
  title={CycleMLP: A MLP-like Architecture for Dense Prediction}, 
  author={Shoufa Chen and Enze Xie and Chongjian Ge and Ding Liang and Ping Luo},
  year={2021},
  eprint={2107.10224},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{wang2021pvtv2,
  title={PVTv2: Improved Baselines with Pyramid Vision Transformer}, 
  author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and Tong Lu and Ping Luo and Ling Shao},
  year={2021},
  eprint={2106.13797},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{elnouby2021xcit,
  title={XCiT: Cross-Covariance Image Transformers}, 
  author={Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Hervé Jegou},
  year={2021},
  eprint={2106.09681},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{yuan2021volo,
  title={VOLO: Vision Outlooker for Visual Recognition}, 
  author={Li Yuan and Qibin Hou and Zihang Jiang and Jiashi Feng and Shuicheng Yan},
  year={2021},
  eprint={2106.13112},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{yan2020micronet,
  title={MicroNet for Efficient Language Modeling}, 
  author={Zhongxia Yan and Hanrui Wang and Demi Guo and Song Han},
  year={2020},
  eprint={2005.07877},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}

@misc{chen2021mobileformer,
  title={Mobile-Former: Bridging MobileNet and Transformer}, 
  author={Yinpeng Chen and Xiyang Dai and Dongdong Chen and Mengchen Liu and Xiaoyi Dong and Lu Yuan and Zicheng Liu},
  year={2021},
  eprint={2108.05895},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@article{rao2021global,
  title={Global Filter Networks for Image Classification},
  author={Rao, Yongming and Zhao, Wenliang and Zhu, Zheng and Lu, Jiwen and Zhou, Jie},
  journal={arXiv preprint arXiv:2107.00645},
  year={2021}
}

@article{huang2021shuffle,
  title={Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer},
  author={Huang, Zilong and Ben, Youcheng and Luo, Guozhong and Cheng, Pei and Yu, Gang and Fu, Bin},
  journal={arXiv preprint arXiv:2106.03650},
  year={2021}
}

You might also like...
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

SOTA model in CIFAR10
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

A toolkit for document-level event extraction, containing some SOTA model implementations
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Collection of generative models in Pytorch version.
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer Implement face detection, and age and gender classification, and emotion classification.
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Releases(v0.2.0)
Owner
sithu3
AI Developer
sithu3
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022