Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

Overview

JoyPy

PyPI version python version Build Status License: MIT Downloads

JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots).

A joyplot.

The code for JoyPy borrows from the code for kdes in pandas.plotting, and uses a couple of utility functions therein.

What are joyplots?

Joyplots are stacked, partially overlapping density plots, simple as that. They are a nice way to plot data to visually compare distributions, especially those that change across one dimension (e.g., over time). Though hardly a new technique, they have become very popular lately thanks to the R package ggjoy (which is much better developed/maintained than this one -- and I strongly suggest you use that if you can use R and ggplot.) Update: the ggjoy package has now been renamed ggridges.

Why are they called joyplots?

If you don't know Joy Division, you are lucky: you can still listen to them for the first time! Here's a hint: google "Unknown Pleasures". This kind of plot is now also known as ridgeline plot, since the original name is controversial.

Documentation and examples

JoyPy has no real documentation. You're strongly encouraged to take a look at this jupyter notebook with a growing number of examples. Similarly, github issues may contain some wisdom :-)

A minimal example is the following:

import joypy
import pandas as pd

iris = pd.read_csv("data/iris.csv")
fig, axes = joypy.joyplot(iris)

By default, joypy.joyplot() will draw joyplot with a density subplot for each numeric column in the dataframe. The density is obtained with the gaussian_kde function of scipy.

Note: joyplot() returns n+1 axes, where n is the number of visible rows (subplots). Each subplot has its own axis, while the last axis (axes[-1]) is the one that is used for things such as plotting the background or changing xticks, and is the one you might need to play with in case you want to manually tweak something.

Dependencies

  • Python 3.5+
    Compatibility with python 2.7 has been dropped with release 0.2.0.

  • numpy

  • scipy >= 0.11

  • matplotlib

  • pandas >= 0.20 Warning: compatibility with pandas >= 0.25 requires joypy >= 0.2.1

Not sure what are the oldest supported versions. As long as you have somewhat recent versions, you should be fine.

Installation

It's actually on PyPI, because why not:

pip install joypy

To install from github, run:

git clone [email protected]:sbebo/joypy.git
cd joypy
pip install .

License

Released under the MIT license.

Disclaimer + contributing

This is just a sunday afternoon hack, so no guarantees! If you want to contribute or just copy/fork, feel free to.

Owner
Leonardo Taccari
Leonardo Taccari
View part of your screen in grayscale or simulated color vision deficiency.

monolens View part of your screen in grayscale or filtered to simulate color vision deficiency. Watch the demo on YouTube. Install with pip install mo

Hans Dembinski 31 Oct 11, 2022
simple tool to paint axis x and y

simple tool to paint axis x and y

G705 1 Oct 21, 2021
HiPlot makes understanding high dimensional data easy

HiPlot - High dimensional Interactive Plotting HiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and

Facebook Research 2.4k Jan 04, 2023
📊 Charts with pure python

A zero-dependency python package that prints basic charts to a Jupyter output Charts supported: Bar graphs Scatter plots Histograms 🍑 📊 👏 Examples

Max Humber 54 Oct 04, 2022
The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain

The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain. The SD provides a novel way to display the coherence function, power, amplitude, phase, and skill sc

Mabel 3 Oct 10, 2022
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

2 Jan 13, 2022
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
Process dataframe in a easily way.

Popanda Written by Shengxuan Wang at OSU. Used for processing dataframe, especially for machine learning. The name is from "Po" in the movie Kung Fu P

ShawnWang 1 Dec 24, 2021
Lumen provides a framework for visual analytics, which allows users to build data-driven dashboards from a simple yaml specification

Lumen project provides a framework for visual analytics, which allows users to build data-driven dashboards from a simple yaml specification

HoloViz 120 Jan 04, 2023
Some method of processing point cloud

Point-Cloud Some method of processing point cloud inversion the completion pointcloud to incomplete point cloud Some model of encoding point cloud to

Tan 1 Nov 19, 2021
Because trello only have payed options to generate a RunUp chart, this solves that!

Trello Runup Chart Generator The basic concept of the project is that Corello is pay-to-use and want to use Trello To-Do/Doing/Done automation with gi

Rômulo Schiavon 1 Dec 21, 2021
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

9 Sep 02, 2022
Create Badges with stats of Scratch User, Project and Studio. Use those badges in Github readmes, etc.

Scratch-Stats-Badge Create customized Badges with stats of Scratch User, Studio or Project. Use those badges in Github readmes, etc. Examples Document

Siddhesh Chavan 5 Aug 28, 2022
A Scheil-Gulliver simulation tool using pycalphad.

scheil A Scheil-Gulliver simulation tool using pycalphad. import matplotlib.pyplot as plt from pycalphad import Database, variables as v from scheil i

pycalphad 6 Dec 10, 2021
Python package for the analysis and visualisation of finite-difference fields.

discretisedfield Marijan Beg1,2, Martin Lang2, Samuel Holt3, Ryan A. Pepper4, Hans Fangohr2,5,6 1 Department of Earth Science and Engineering, Imperia

ubermag 12 Dec 14, 2022
Typical: Fast, simple, & correct data-validation using Python 3 typing.

typical: Python's Typing Toolkit Introduction Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types

Sean 171 Jan 02, 2023
A tool for automatically generating 3D printable STLs from freely available lidar scan data.

mini-map-maker A tool for automatically generating 3D printable STLs from freely available lidar scan data. Screenshots Tutorial To use this script, g

Mike Abbott 51 Nov 06, 2022
Fast visualization of radar_scenes based on oleschum/radar_scenes

RadarScenes Tools About This python package provides fast visualization for the RadarScenes dataset. The Open GL based visualizer is smoother than ole

Henrik Söderlund 2 Dec 09, 2021
This project is an Algorithm Visualizer where a user can visualize algorithms like Bubble Sort, Merge Sort, Quick Sort, Selection Sort, Linear Search and Binary Search.

Algo_Visualizer This project is an Algorithm Visualizer where a user can visualize common algorithms like "Bubble Sort", "Merge Sort", "Quick Sort", "

Rahul 4 Feb 07, 2022
coordinate to draw the nimbus logo on the graffitiwall

This is a community effort to draw the nimbus logo on beaconcha.in's graffitiwall. get started clone repo with git clone https://github.com/tennisbowl

4 Apr 04, 2022