Fake Shakespearean Text Generator

Overview

Fake Shakespearean Text Generator

This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts.

Files and folders of the project.

models folder

This folder contains to zip file, one for stateful model and the other for stateless model (this model files are fully saved model architectures,not just weights).

weights.zip

As you its name implies, this zip file contains the model's weights as checkpoint format (see tensorflow model save formats).

tokenizer.save

This file is an saved and trained (sure on the dataset) instance of Tensorflow Tokenizer (used at inference time).

shakespeare.txt

This file is the dataset and composed of regular texts (see below what does it look like).

First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

train.py

Contains codes for training.

inference.py

Contains codes for inference.

How to Train the Model

A more depth look into train.py file


First, it gets the dataset from the specified url (line 11). Then reads the dataset to train the tokenizer object just mentioned above and trains the tokenizer (line 18). After training, encodes the dataset (line 24). Since this is a stateful model, all sequences in batch should be start where the sequences at the same index number in the previous batch left off. Let's say a batch composes of 32 sequences. The 33th sequence (i.e. the first sequence in the second batch) should exactly start where the 1st sequence (i.e. first sequence in the first batch) ended up. The second sequence in the 2nd batch should start where 2nd sequnce in first batch ended up and so on. Codes between line 28 and line 48 do this and result the dataset. Codes between line 53 and line 57 create the stateful model. Note that to be able to adjust recurrent_dropout hyperparameter you have to train the model on a GPU. After creation of model, a callback to reset states at the beginning of each epoch is created. Then the training start with the calling fit method and then model (see tensorflow' entire model save), model's weights and the tokenizer is saved.

Usage of the Model

Where the magic happens (inference.py file)


To be able use the model, it should first converted to a stateless model due to a stateful model expects a batch of inputs instead of just an input. To do this a stateless model with the same architecture of stateful model should be created. Codes between line 44 and line 49 do this. To load weights the model should be builded. After building weight are loaded to the stateless model. This model uses predicted character at time step t as an inputs at time t + 1 to predict character at t + 2 and this operation keep goes until the prediction of last character (in this case it 100 but you can change it whatever you want. Note that the longer sequences end up with more inaccurate results). To predict the next characters, first the provided initial character should be tokenized. preprocess function does this. To prevent repeated characters to be shown in the generated text, the next character should be selected from candidate characters randomly. The next_char function does this. The randomness can be controlled with temperature parameter (to learn usage of it check the comment at line 30). The complete_text function, takes a character as an argument, predicts the next character via next_char function and concatenates the predicted character to the text. It repeats the process until to reach n_chars. Last, the stateless model will be saved also.

Results

Effects of the magic


print(complete_text("a"))

arpet:
like revenge borning and vinged him not.

lady good:
then to know to creat it; his best,--lord


print(complete_text("k"))

ken countents.
we are for free!

first man:
his honour'd in the days ere in any since
and all this ma


print(complete_text("f"))

ford:
hold! we must percy and he was were good.

gabes:
by fair lord, my courters,
sir.

nurse:
well


print(complete_text("h"))

holdred?
what she pass myself in some a queen
and fair little heartom in this trumpet our hands?
the

Owner
Recep YILDIRIM
Software Imagineering
Recep YILDIRIM
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format

RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co

Šarūnas Navickas 60 Sep 26, 2022
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023