Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Related tags

Deep LearningIB-Loss
Overview

Influence-balanced Loss for Imbalanced Visual Classification (ICCV, 2021)

This is the official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch. The code heavily relies on LDAM-DRW.

Requirements

All codes are written by Python 3.7, and 'requirements.txt' contains required Python packages. To install requirements:

pip install -r requirements.txt

Dataset

Create 'data/' directory and download original data in the directory to make imbalanced versions.

  • Imbalanced CIFAR. The original data will be downloaded and converted by imbalancec_cifar.py.
  • Imbalanced Tiny ImageNet. Download the data first, and convert them by imbalance_tinyimagenet.py.
  • The paper also reports results on iNaturalist 2018. We will update the code for iNaturalist 2018 later.

Training

We provide several training examples:

CIFAR

  • CE baseline (CIFAR-100, long-tailed imabalance ratio of 100)
python cifar_train.py --dataset cifar100 --loss_type CE --train_rule None --imb_type exp --imb_factor 0.01 --epochs 200 --num_classes 100 --gpu 0
  • IB (CIFAR-100, long-tailed imabalance ratio of 100)
python cifar_train.py --dataset cifar100 --loss_type IB --train_rule IBReweight --imb_type exp --imb_factor 0.01 --epochs 200 --num_classes 100 --start_ib_epoch 100 --gpu 0
  • IB + CB (CIFAR-100, long-tailed imabalance ratio of 100)
python cifar_train.py --dataset cifar100 --loss_type IB --train_rule CBReweight --imb_type exp --imb_factor 0.01 --epochs 200 --num_classes 100 --start_ib_epoch 100 --gpu 0
  • IB + Focal (CIFAR-100, long-tailed imabalance ratio of 100)
python cifar_train.py --dataset cifar100 --loss_type IBFocal --train_rule IBReweight --imb_type exp --imb_factor 0.01 --epochs 200 --num_classes 100 --start_ib_epoch 100 --gpu 0

Tiny ImageNet

  • CE baseline (long-tailed imabalance ratio of 100)
python tinyimage_train.py --dataset tinyimagenet -a resnet18 --loss_type CE --train_rule None --imb_type exp --imb_factor 0.01 --epochs 100 --lr 0.1  --num_classes 200
  • IB (long-tailed imabalance ratio of 100)
python tinyimage_train.py --dataset tinyimagenet -a resnet18 --loss_type IB --train_rule IBReweight --imb_type exp --imb_factor 0.01 --epochs 100 --lr 0.1  --num_classes 200 --start_ib_epoch 50

Citation

If you find our paper and repo useful, please cite our paper

Owner
Seulki Park
PhD Student in Electrical and Computer Engineering at Seoul National University, Korea
Seulki Park
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022