snappi-trex is a snappi plugin that allows executing scripts written using snappi with Cisco's TRex Traffic Generator

Related tags

Networkingsnappi-trex
Overview

snappi-trex

license Project Status: Active – The project has reached a stable, usable state and is being actively developed. Build Total alerts Language grade: Python pypi python

snappi-trex is a snappi plugin that allows executing scripts written using snappi with Cisco's TRex Traffic Generator

Design

snappi-trex converts snappi Open Traffic Generator API configuration into the equivalent TRex STL Client configuration. This allows users to use the TRex Traffic Generator and its useful features without having to write complex TRex scripts.

diagram

The above diagram outlines the overall process of how the snappi Open Traffic Generator API is able to interface with TRex and generate traffic over its network interfaces. snappi-trex is essential to convert snappi scripts into the equivalent TRex STL Client instructions.


snappi-trex usage follows the standard usage of snappi with a few modifications outlined in the Usage document.

Demos

Click here for the Quickstart Guide Video Tutorial

  • This goes over the installation and setup for snappi-trex, and how to run a basic snappi script using snappi-trex

Click here for the snappi-trex P4 PTF Demo

  • This demonstrates snappi-trex being used with the P4 Packet Testing Framework in a 4 Port Mesh configuration

Table of Contents


Quickstart

snappi-trex is a snappi plugin that allows executing scripts written using snappi with Cisco's TRex Traffic Generator


--> Click here for the Quickstart Guide Video Tutorial


Installing and Running TRex

TRex must be installed and running before proceeding

TRex must be installed and configured in order to use snappi-trex. For a quick tutorial on TRex installation, running, and basic usage, check out my TRex Tutorial


Installing snappi-trex

Make sure python-pip3 is installed

sudo apt-get install python3-pip

Install snappi and the snappi-trex extension

pip3 install snappi==0.4.26 snappi[trex]

Start Scripting

Let's run our first script called hello_snappi_trex.py: A basic snappi script that transmits 1000 UDP packets bidirectionally between two ports and verifies that they are received. This file can be found at examples/hello_snappi_trex.py in the snappi-trex Github Repo.

git clone https://github.com/open-traffic-generator/snappi-trex
python3 snappi-trex/examples/hello_snappi_trex.py

You may also just paste the script in from below.

hello_snappi_trex.py
p2').flow(name='flow p2->p1') # and assign source and destination ports for each f1.tx_rx.port.tx_name, f1.tx_rx.port.rx_name = p1.name, p2.name f2.tx_rx.port.tx_name, f2.tx_rx.port.rx_name = p2.name, p1.name # configure packet size, rate and duration for both flows f1.size.fixed, f2.size.fixed = 128, 256 for f in cfg.flows: # send 1000 packets and stop f.duration.fixed_packets.packets = 1000 # send 1000 packets per second f.rate.pps = 1000 # configure packet with Ethernet, IPv4 and UDP headers for both flows eth1, ip1, udp1 = f1.packet.ethernet().ipv4().udp() eth2, ip2, udp2 = f2.packet.ethernet().ipv4().udp() # set source and destination MAC addresses eth1.src.value, eth1.dst.value = '00:AA:00:00:04:00', '00:AA:00:00:00:AA' eth2.src.value, eth2.dst.value = '00:AA:00:00:00:AA', '00:AA:00:00:04:00' # set source and destination IPv4 addresses ip1.src.value, ip1.dst.value = '10.0.0.1', '10.0.0.2' ip2.src.value, ip2.dst.value = '10.0.0.2', '10.0.0.1' # set incrementing port numbers as source UDP ports udp1.src_port.increment.start = 5000 udp1.src_port.increment.step = 2 udp1.src_port.increment.count = 10 udp2.src_port.increment.start = 6000 udp2.src_port.increment.step = 4 udp2.src_port.increment.count = 10 # assign list of port numbers as destination UDP ports udp1.dst_port.values = [4000, 4044, 4060, 4074] udp2.dst_port.values = [8000, 8044, 8060, 8074, 8082, 8084] print('Pushing traffic configuration ...') api.set_config(cfg) print('Starting packet capture on all configured ports ...') cs = api.capture_state() cs.state = cs.START api.set_capture_state(cs) print('Starting transmit on all configured flows ...') ts = api.transmit_state() ts.state = ts.START api.set_transmit_state(ts) print('Checking metrics on all configured ports ...') print('Expected\tTotal Tx\tTotal Rx') assert wait_for(lambda: metrics_ok(api, cfg)), 'Metrics validation failed!' assert captures_ok(api, cfg), 'Capture validation failed!' print('Test passed !') def metrics_ok(api, cfg): # create a port metrics request and filter based on port names req = api.metrics_request() req.port.port_names = [p.name for p in cfg.ports] # include only sent and received packet counts req.port.column_names = [req.port.FRAMES_TX, req.port.FRAMES_RX] # fetch port metrics res = api.get_metrics(req) # calculate total frames sent and received across all configured ports total_tx = sum([m.frames_tx for m in res.port_metrics]) total_rx = sum([m.frames_rx for m in res.port_metrics]) expected = sum([f.duration.fixed_packets.packets for f in cfg.flows]) print('%d\t\t%d\t\t%d' % (expected, total_tx, total_rx)) return expected == total_tx and total_rx >= expected def captures_ok(api, cfg): import dpkt print('Checking captured packets on all configured ports ...') print('Port Name\tExpected\tUDP packets') result = [] for p in cfg.ports: exp, act = 1000, 0 # create capture request and filter based on port name req = api.capture_request() req.port_name = p.name # fetch captured pcap bytes and feed it to pcap parser dpkt pcap = dpkt.pcap.Reader(api.get_capture(req)) for _, buf in pcap: # check if current packet is a valid UDP packet eth = dpkt.ethernet.Ethernet(buf) if isinstance(eth.data.data, dpkt.udp.UDP): act += 1 print('%s\t\t%d\t\t%d' % (p.name, exp, act)) result.append(exp == act) return all(result) def wait_for(func, timeout=10, interval=0.2): """ Keeps calling the `func` until it returns true or `timeout` occurs every `interval` seconds. """ import time start = time.time() while time.time() - start <= timeout: if func(): return True time.sleep(interval) print('Timeout occurred !') return False if __name__ == '__main__': hello_snappi_trex() ">
import snappi
import sys, os

# Replace v2.90 with the installed version of TRex. 
# Change '/opt/trex' if you installed TRex in another location
trex_path = '/opt/trex/v2.90/automation/trex_control_plane/interactive'
sys.path.insert(0, os.path.abspath(trex_path))


def hello_snappi_trex():
    """
    This script does following:
    - Send 1000 packets back and forth between the two ports at a rate of
      1000 packets per second.
    - Validate that total packets sent and received on both interfaces is as
      expected using port metrics.
    - Validate that captured UDP packets on both the ports are as expected.
    """
    # create a new API instance where host points to controller
    api = snappi.api(ext='trex')
    # and an empty traffic configuration to be pushed to controller later on
    cfg = api.config()

    # add two ports where location points to traffic-engine (aka ports)
    p1, p2 = (
        cfg.ports
        .port(name='p1')
        .port(name='p2')
    )

    # add layer 1 property to configure same speed on both ports
    ly = cfg.layer1.layer1(name='ly')[-1]
    ly.port_names = [p1.name, p2.name]
    ly.speed = ly.SPEED_1_GBPS

    # enable packet capture on both ports
    cp = cfg.captures.capture(name='cp')[-1]
    cp.port_names = [p1.name, p2.name]

    # add two traffic flows
    f1, f2 = cfg.flows.flow(name='flow p1->p2').flow(name='flow p2->p1')
    # and assign source and destination ports for each
    f1.tx_rx.port.tx_name, f1.tx_rx.port.rx_name = p1.name, p2.name
    f2.tx_rx.port.tx_name, f2.tx_rx.port.rx_name = p2.name, p1.name

    # configure packet size, rate and duration for both flows
    f1.size.fixed, f2.size.fixed = 128, 256
    for f in cfg.flows:
        # send 1000 packets and stop
        f.duration.fixed_packets.packets = 1000
        # send 1000 packets per second
        f.rate.pps = 1000

    # configure packet with Ethernet, IPv4 and UDP headers for both flows
    eth1, ip1, udp1 = f1.packet.ethernet().ipv4().udp()
    eth2, ip2, udp2 = f2.packet.ethernet().ipv4().udp()

    # set source and destination MAC addresses
    eth1.src.value, eth1.dst.value = '00:AA:00:00:04:00', '00:AA:00:00:00:AA'
    eth2.src.value, eth2.dst.value = '00:AA:00:00:00:AA', '00:AA:00:00:04:00'

    # set source and destination IPv4 addresses
    ip1.src.value, ip1.dst.value = '10.0.0.1', '10.0.0.2'
    ip2.src.value, ip2.dst.value = '10.0.0.2', '10.0.0.1'

    # set incrementing port numbers as source UDP ports
    udp1.src_port.increment.start = 5000
    udp1.src_port.increment.step = 2
    udp1.src_port.increment.count = 10

    udp2.src_port.increment.start = 6000
    udp2.src_port.increment.step = 4
    udp2.src_port.increment.count = 10

    # assign list of port numbers as destination UDP ports
    udp1.dst_port.values = [4000, 4044, 4060, 4074]
    udp2.dst_port.values = [8000, 8044, 8060, 8074, 8082, 8084]

    print('Pushing traffic configuration ...')
    api.set_config(cfg)

    print('Starting packet capture on all configured ports ...')
    cs = api.capture_state()
    cs.state = cs.START
    api.set_capture_state(cs)

    print('Starting transmit on all configured flows ...')
    ts = api.transmit_state()
    ts.state = ts.START
    api.set_transmit_state(ts)

    print('Checking metrics on all configured ports ...')
    print('Expected\tTotal Tx\tTotal Rx')
    assert wait_for(lambda: metrics_ok(api, cfg)), 'Metrics validation failed!'

    assert captures_ok(api, cfg), 'Capture validation failed!'

    print('Test passed !')


def metrics_ok(api, cfg):
    # create a port metrics request and filter based on port names
    req = api.metrics_request()
    req.port.port_names = [p.name for p in cfg.ports]
    # include only sent and received packet counts
    req.port.column_names = [req.port.FRAMES_TX, req.port.FRAMES_RX]

    # fetch port metrics
    res = api.get_metrics(req)
    # calculate total frames sent and received across all configured ports
    total_tx = sum([m.frames_tx for m in res.port_metrics])
    total_rx = sum([m.frames_rx for m in res.port_metrics])
    expected = sum([f.duration.fixed_packets.packets for f in cfg.flows])

    print('%d\t\t%d\t\t%d' % (expected, total_tx, total_rx))

    return expected == total_tx and total_rx >= expected


def captures_ok(api, cfg):
    import dpkt
    print('Checking captured packets on all configured ports ...')
    print('Port Name\tExpected\tUDP packets')

    result = []
    for p in cfg.ports:
        exp, act = 1000, 0
        # create capture request and filter based on port name
        req = api.capture_request()
        req.port_name = p.name
        # fetch captured pcap bytes and feed it to pcap parser dpkt
        pcap = dpkt.pcap.Reader(api.get_capture(req))
        for _, buf in pcap:
            # check if current packet is a valid UDP packet
            eth = dpkt.ethernet.Ethernet(buf)
            if isinstance(eth.data.data, dpkt.udp.UDP):
                act += 1

        print('%s\t\t%d\t\t%d' % (p.name, exp, act))
        result.append(exp == act)

    return all(result)


def wait_for(func, timeout=10, interval=0.2):
    """
    Keeps calling the `func` until it returns true or `timeout` occurs
    every `interval` seconds.
    """
    import time
    start = time.time()

    while time.time() - start <= timeout:
        if func():
            return True
        time.sleep(interval)

    print('Timeout occurred !')
    return False


if __name__ == '__main__':
    hello_snappi_trex()


Output

If everything is working correctly, you should see a similar output as this.

Pushing traffic configuration ...
Starting packet capture on all configured ports ...
Starting transmit on all configured flows ...
Checking metrics on all configured ports ...
Expected        Total Tx        Total Rx
2000            19              17
2000            445             437
2000            881             881
2000            1325            1325
2000            1761            1761
2000           2000            2000
Checking captured packets on all configured ports ...
Port Name       Expected        UDP packets
p1              1000            1000
p2              1000            1000
Test passed !
You might also like...
These scripts send notifications to a Webex space when a new IP is banned by Expressway, and allow to request more info or change the ban status
These scripts send notifications to a Webex space when a new IP is banned by Expressway, and allow to request more info or change the ban status

Spam Call and Toll Fraud Mitigation Cisco Expressway release X14 is able to mitigate spam calls and toll fraud attempts by jailing the spam IP address

A repository dedicated to IoT(internet of things ) and python scripts
A repository dedicated to IoT(internet of things ) and python scripts

📑 Introduction Week of Learning is a weekly program in which you will get all the necessary knowledge about Circuit-Building, Arduino and Micro-Contr

Repo used to maintain all notes and scripts developed during my DevNet Expert studies

DevNet Expert Studies Exam Date: TBD (Waiting for registration to open) This repository will be used to track my progress and maintain all notes/scrip

 Python Scripts for Cisco Identity Services Engine (ISE)
Python Scripts for Cisco Identity Services Engine (ISE)

A set of Python scripts to configure a freshly installed Cisco Identity Services Engine (ISE) for simple operation; in my case, a basic Cisco Software-Defined Access environment.

DataShare - Simple library for data sharing between scripts and public functions calling

DataShare - Simple library for data sharing between scripts and public functions calling. Installation. Install code, Delete LICENSE, README, readme.t

Python Scrcpy Client - allows you to view and control android device in realtime
Python Scrcpy Client - allows you to view and control android device in realtime

Python Scrcpy Client This package allows you to view and control android device in realtime. Note: This gif is compressed and experience lower quality

InfraGenie is allows you to split out your infrastructure project into separate independent pieces, each with its own terraform state.
InfraGenie is allows you to split out your infrastructure project into separate independent pieces, each with its own terraform state.

🧞 InfraGenie InfraGenie is allows you to split out your infrastructure project into separate independent pieces, each with its own terraform state. T

A simple and lightweight server that allows clients to connect and launch a shell remotely through a browser.

carrotsh A simple and lightweight server that allows clients to connect and launch a shell remotely through a browser. Uses xterm.js for the frontend

A web-based app that allows easy, simple - and if desired high-throughput - analysis of qPCR data
A web-based app that allows easy, simple - and if desired high-throughput - analysis of qPCR data

qpcr-Analyser A web-based GUI for the qpcr package that allows easy, simple and high-throughput analysis of qPCR data. As is described in more detail

Owner
Open Traffic Generator
Open Traffic Generator
Bittensor - an open, decentralized, peer-to-peer network that functions as a market system for the development of artificial intelligence

At Bittensor, we are creating an open, decentralized, peer-to-peer network that functions as a market system for the development of artificial intelligence.

Opentensor 169 Dec 30, 2022
a safe proxy over tls

TlsProxys 基于TLS协议的http流量代理 安装 ※ 需要python3.7+ linux: python3.9 -m pip install TlsProxys windows: pip install TlsProxys 基本用法 服务器端: $ tpserver [command]

56 Nov 30, 2022
A socket script to obtain chinese phones-sequence for any english word

Foreign Pronunciation Generator (English-Chinese) We provide a simple socket script for acquiring Chinese pronunciation of English words (phones in ai

Ephemeroptera 5 Jul 25, 2022
AdaFruit Funhouse publishing Temperature, Humidity and Pressure to MQTT / Apache Pulsar

pulsar-adafruit-funhouse AdaFruit Funhouse publishing Temperature, Humidity and Pressure to MQTT / Apache Pulsar Device Get your own from adafruit Ada

Timothy Spann 1 Dec 30, 2021
The Delegate Network: An Interactive Voice Response Delegative Democracy Implementation of Liquid Democracy

The Delegate Network Overview The delegate network is a completely transparent, easy-to-use and understand version of what is sometimes called liquid

James Bowery 2 Feb 25, 2022
An advanced real time threat intelligence framework to identify threats and malicious web traffic on the basis of IP reputation and historical data.

ARTIF is a new advanced real time threat intelligence framework built that adds another abstraction layer on the top of MISP to identify threats and malicious web traffic on the basis of IP reputatio

CRED 225 Dec 31, 2022
🐛 SSH self spreading worm written in python3 to propagate a botnet.

Mirkat SSH self spreading worm written in python3 to propagate a botnet. Install tutorial. cd ./script && sh setup.sh Support me. ⚠️ If this reposito

Ѵιcнч 58 Nov 01, 2022
Wallc - Calculate the layout on the wall to hang up pictures

wallc Calculate the layout on the wall to hang up pictures. Installation pip install git+https://github.com/trbznk/wallc.git Getting Started Currently

Alex Trbznk 68 Sep 09, 2022
Simple P2P application for sending files over open and forwarded network ports.

FileShareV2 A major overhaul to the V1 (now deprecated) FileShare application. V2 brings major improvements in both UI and performance. V2 is now base

Michael Wang 1 Nov 23, 2021
jarbou3 is rat tool coded in python with C&C which can accept multiple connections from clients

jarbou3 Jarbou3 is rat tool with coded in python with C&C which can accept multi

youhacker55 108 Dec 29, 2022
Solismod - A script subscribes to MQTT topics and waits for a message

SolisMod This is a first attempt to modify Solis inverter settings As SolisMon3,

9 Nov 14, 2022
A gRPC-Web implementation for Python

Sonora Sonora is a Python-first implementation of gRPC-Web built on top of standard Python APIs like WSGI and ASGI for easy integration. Why? Regular

Alex Stapleton 216 Dec 30, 2022
With the use of this tool, you can change your MAC address

Akshat0404/MAC_CHANGER This tool has to be used on linux kernel. Now o

1 Jan 25, 2022
PcapXray - A Network Forensics Tool - To visualize a Packet Capture offline as a Network Diagram

PcapXray - A Network Forensics Tool - To visualize a Packet Capture offline as a Network Diagram including device identification, highlight important communication and file extraction

Srinivas P G 1.4k Dec 28, 2022
This tools just for education only - Layer-7 or HTTP FLOODER

Layer-7-Flooder This tools just for education only - Layer-7 or HTTP FLOODER Require Col1 Before You Run this tools How To Use Download This Source Ex

NumeX 7 Oct 30, 2022
ServerStatus with node management and monitor

ServerStatus with node management and monitor

lidalao 162 Jan 01, 2023
Simple self-hosted server to receive files from remote systems

Badtray This is a very simple self-hosted server to receive files from remote systems. This works similar to Bintray (RIP) and primarily designed to d

Alex Taradov 1 Nov 22, 2021
Apple Store Stock Notifier monitors the availability of selected Apple devices in selected Apple stores, and sends you a notification when devices are available!

Apple Store Stock Notifier This software will immediately send you a notification via Telegram when one of your coveted Apple Devices is available in

Floris-Jan Willemsen 25 Dec 05, 2022
Control your Puffco Peak Pro from your computer!

PuffcoPC Control your Puffco Peak Pro from your computer! Contributions Pull requests are welcome. For major changes, please open an issue first to di

Bryan Muschter 5 Nov 02, 2022
sync application configuration and settings across multiple multiplatform devices

sync application configuration and settings across multiple multiplatform devices ✨ Key Features • ⚗️ Installation • 📑 How To Use • 🤔 FAQ • 🛠️ Setu

Souvik 6 Aug 25, 2022