Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

Related tags

Computer VisionRaVAEn
Overview

RaVAEn

Project sample The RaVÆn system
We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment. It flags changed areas to prioritise for downlink, shortening the response time. We show that the proposed method outperforms pixel-wise baselines and we test it on resource-limited hardware. We also release the annotated dataset of extreme events. Work conducted at the FDL Europe 2021.

NeurIPS workshop papervideo from AI+HADR'21Quick Colab Example


Unsupervised Change Detection of Extreme Events Using ML On-Board

Flooding event example

Abstract: In this paper, we introduce RaVAEn, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment. Applications such as disaster management enormously benefit from the rapid availability of satellite observations. Traditionally, data analysis is performed on the ground after all data is transferred - downlinked - to a ground station. Constraint on the downlink capabilities therefore affects any downstream application. In contrast, RaVAEn pre-processes the sampled data directly on the satellite and flags changed areas to prioritise for downlink, shortening the response time. We verified the efficacy of our system on a dataset composed of time series of catastrophic events - which we plan to release alongside this publication - demonstrating that RaVAEn outperforms pixel-wise baselines. Finally we tested our approach on resource-limited hardware for assessing computational and memory limitations.

Dataset

The full annotated dataset used for evaluation is hosted on Google Drive here. It contains 5 locations for each of the Landslide, Hurricane, Fire events and 4 locations for Floods events. For more details see the paper (we use the Sentinel-2 mission, level L1C data).

Map of the events

For dataset inspection use the prepared Colab Dataset Exploration demo .

Code examples

Install

# This will create a ravaen_env conda environment:
make requirements
conda activate ravaen_env
# Add these to open the prepared notebooks:
conda install nb_conda
jupyter notebook
# This will open an interactive notebook in your browser where you can navigate to the training or inference demo

Inference

To start using our model for inference, it's best to start with the prepared Colab Inference demo , which downloads our annotated dataset and evaluates a pre-trained model on a selected event type.

# Check possible parameters with:
!python3 -m scripts.evaluate_model --help 

# Example evaluation script used for the paper results for "small size" VAE model (remeber to adjust paths to the dataset and to the saved model checkpoints)
./bash/eval_run_papers_v3_VAE_128_D_small.sh

Training

For a fast demo on how to train these models on a custom folder of locations, check the Training demo as that presents an easy entry point to this repository. To reproduce the same training process as reported in the paper, you will need to download the whole WorldFloods dataset (see here) and prepare the same folder structure as we chose for the validation datasets.

# Check possible parameters with:
!python3 -m scripts.train_model --help

# Run the same training script used for the paper results for "small size" VAE model (remember to adjust the paths to the training datasets)
./bash/train_run_papers_v3_VAE_128_small_D.sh

Generality of the solution

Hurricane event example

Name "RaVAEn"

Our project is named after the two ravens in Norse mythology who are helping spirits of the god Odin and also highlights the usage of a Variational Auto-Encoder (VAE) as the main model:

Two ravens sit on his (Odin’s) shoulders and whisper all the news which they see and hear into his ear; they are called Huginn and Muninn. He sends them out in the morning to fly around the whole world, and by breakfast they are back again. Thus, he finds out many new things and this is why he is called ‘raven-god’ (hrafnaguð). (source)

Citation

If you find RaVAEn useful in your research, please consider citing the following paper:

@inproceedings{ravaen2021,
  title = {Unsupervised {Change} {Detection} of {Extreme} {Events} {Using} {ML} {On}-{Board}},
  url = {http://arxiv.org/abs/2111.02995},
  booktitle = {Artificial {Intelligence} for {Humanitarian} {Assistance} and {Disaster} {Response} {Workshop}, 35th {Conference} on {Neural} {Information} {Processing} {Systems} ({NeurIPS} 2021), {Vancouver}, {Canada}},
  author = {Růžička, Vít and Vaughan, Anna and De Martini, Daniele and Fulton, James and Salvatelli, Valentina and Bridges, Chris and Mateo-Garcia, Gonzalo and Zantedeschi, Valentina},
  month = nov,
  year = {2021},
  note = {arXiv: 2111.02995}
}
Owner
SpaceML
SpaceML
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
Using computer vision method to recognize and calcutate the features of the architecture.

building-feature-recognition In this repository, we accomplished building feature recognition using traditional/dl-assisted computer vision method. Th

4 Aug 11, 2022
Web interface for browsing arXiv papers

Currently, arxivbox considers only major computer vision and machine learning conferences

Ankan Kumar Bhunia 12 Sep 11, 2022
Read Japanese manga inside browser with selectable text.

mokuro Read Japanese manga with selectable text inside a browser. See demo: https://kha-white.github.io/manga-demo mokuro_demo.mp4 Demo contains excer

Maciej Budyś 170 Dec 27, 2022
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

81 Jan 01, 2023
This is the open source implementation of the ICLR2022 paper "StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis"

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image

Meta Research 840 Dec 26, 2022
This is a project to detect gestures to zoom in or out, using the real-time distance between the index finger and the thumb. It's based on OpenCV and Mediapipe.

Pinch-zoom This is a python project based on real-time hand-gesture detection, to zoom in or out, using the distance between the index finger and the

Harshit Bhalla 6 Jul 11, 2022
Automatically resolve RidderMaster based on TensorFlow & OpenCV

AutoRiddleMaster Automatically resolve RidderMaster based on TensorFlow & OpenCV 基于 TensorFlow 和 OpenCV 实现的全自动化解御迷士小马谜题 Demo How to use Deploy the ser

神龙章轩 5 Nov 19, 2021
Deep LearningImage Captcha 2

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 117 Dec 28, 2022
Awesome anomaly detection in medical images

A curated list of awesome anomaly detection works in medical imaging, inspired by the other awesome-* initiatives.

Kang Zhou 57 Dec 19, 2022
OCR software for recognition of handwritten text

Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis

Břetislav Hájek 562 Jan 03, 2023
The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

10 Oct 21, 2022
📷 This repository is focused on having various feature implementation of OpenCV in Python.

📷 This repository is focused on having various feature implementation of OpenCV in Python. The aim is to have a minimal implementation of all OpenCV features together, under one roof.

Aditya Kumar Gupta 128 Dec 04, 2022
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
A simple QR-Code Reader in Python

A simple QR-Code Reader written in Python, that copies the content of a QR-Code directly into the copy clipboard.

Eric 1 Oct 28, 2021
Write-ups for the SwissHackingChallenge2021 CTF.

SwissHackingChallenge 2021 : Write-ups This repository contains a collection of my write-ups for challenges solved during the SwissHackingChallenge (S

Julien Béguin 3 Jun 07, 2021
A tool to make dumpy among us GIFS

Among Us Dumpy Gif Maker Made by ThatOneCalculator & Pixer415 With help from Telk, karl-police, and auguwu! Please credit this repository when you use

Kainoa Kanter 535 Jan 07, 2023
Rubik's Cube in pygame with OpenGL

Rubik Rubik's Cube in pygame with OpenGL The script show on the screen a Rubik Cube buit with OpenGL. Then I have also implemented all the possible mo

Gabro 2 Apr 15, 2022
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022