Exploring the Top ML and DL GitHub Repositories

Overview

Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I collected data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

I've written a corresponding article about this project, which you can find on Towards Data Science. The article was selected as an "Editors Pick", and was also selected to be in their "Hands on Tutorials" section of their publication.

At a high level, my analysis is as follows:

  1. I collected data on the top machine learning and deep learning repositories and their respective owners from GitHub.
  2. I cleaned and prepared the data.
  3. I visualized what I thought were interesting patterns, trends, and findings within the data, and discuss each visualization in detail within the TDS article above.

Tools used

Python NumPy pandas tqdm PyGitHub GeoPy Altair tqdm wordcloud docopt black

Replicating the Analysis

I've designed the analysis in this repository so that anyone is able to recreate the data collection, cleaning, and visualization steps in a fully automated manner. To do this, open up a terminal and follow the steps below:

Step 1: Clone this repository to your computer

# clone the repo
git clone https://github.com/nicovandenhooff/top-repo-analysis.git

# change working directory to the repos root directory
cd top-repo-analysis

Step 2: Create and activate the required virtual environment

# create the environment
conda env create -f environment.yaml

# activate the environment
conda activate top-repo-analysis

Step 3: Obtain a GitHub personal access token ("PAT") and add it to the credentials file

Please see how to obtain a PAT here.

Once you have it perform the following:

# open the credentials file
open src/credentials.json

This will open the credentials json file which contains the following:

" }">
{
"github_token": "
   
    "
   
}

Change to your PAT.

Step 4: Run the following command to delete the current data and visualizations in the repository

make clean

Step 5: Run the following command to recreate the analysis

make all

Please note that if you are recreating the analysis:

  • The last step will take several hours to run (approximately 6-8 hours) as the data collection process from GitHub has to sleep to respect the GitHub API rate limit. The total number of API requests for the data collection will approximately be between 20,000 to 30,000.
  • When the data cleaning script data_cleaning.py runs, there make be some errors may be printed to the screen by GeoPy if the Noinatim geolocation service is unable to find a valid location for a GitHub user. This will not cause the script to terminate, and is just ugly in the terminal. Unfortunately you cannot suppress these error messages, so just ignore them if they occur.
  • Getting the location data with GeoPy in the data cleaning script also takes about 30 minutes as the Nominatim geolocation service limits 1 API request per second.
  • I ran this analysis on December 30, 2021 and as such collected the data from GitHub on this date. If you run this analysis in the future, the data you collect will inherently be slightly different if the machine learning and deep learning repositories with the highest number of stars has changed since the date when I ran the analysis. This will slightly change how the resulting visualizations look.

Using the Scraper to Collect New Data

You can also use the scraping script in isolation to collect new data from GitHub if you desire.

If you'd like to do this, all you'll need to do is open up a terminal, follow steps 1 to 3 above, and then perform the following:

Step a) Run the scraping script with your desired options as follows

python src/github_scraper.py --queries=<queries> --path=<path>
  • Replace with your desired queries. Note that if you desire multiple search queries, enclose them in "" separate them by a single comma with NO SPACE after the comma. For example "Machine Learning,Deep Learning"
  • Replace with the output path that you want the scraped data to be saved at.

Please see the documentation in the header of the scraping script for additional options that are available.

Step b) Run the data cleaning script to clean your newly scraped data

python src/data_cleaning.py --input_path=<path> --output_path=<output_path>
  • Replace with the path that you saved the scraped data at.
  • Replace with the output path that you want the cleaned data to be saved at.
  • As metioned in the last section, some errors may be printed to the terminal by GeoPy during the data cleaning process, but feel free to ignore these as they do not affect the execution of the script.

Dependencies

Please see the environment file for a full list of dependencies.

License

The source code for the site is licensed under the MIT license.

You might also like...
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Releases(v1.0.0)
Owner
Nico Van den Hooff
UBC Master of Data Science 2022
Nico Van den Hooff
bigdata_analyse 大数据分析项目

bigdata_analyse 大数据分析项目 wish 采用不同的技术栈,通过对不同行业的数据集进行分析,期望达到以下目标: 了解不同领域的业务分析指标 深化数据处理、数据分析、数据可视化能力 增加大数据批处理、流处理的实践经验 增加数据挖掘的实践经验

Way 2.4k Dec 30, 2022
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
In this tutorial, raster models of soil depth and soil water holding capacity for the United States will be sampled at random geographic coordinates within the state of Colorado.

Raster_Sampling_Demo (Resulting graph of this demo) Background Sampling values of a raster at specific geographic coordinates can be done with a numbe

2 Dec 13, 2022
PyClustering is a Python, C++ data mining library.

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each

Andrei Novikov 1k Jan 05, 2023
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
sportsdataverse python package

sportsdataverse-py See CHANGELOG.md for details. The goal of sportsdataverse-py is to provide the community with a python package for working with spo

Saiem Gilani 37 Dec 27, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

Corca AI 7 Sep 30, 2022
A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Thomas Träff 2 Dec 22, 2021
Fitting thermodynamic models with pycalphad

ESPEI ESPEI, or Extensible Self-optimizing Phase Equilibria Infrastructure, is a tool for thermodynamic database development within the CALPHAD method

Phases Research Lab 42 Sep 12, 2022
OpenDrift is a software for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere.

opendrift OpenDrift is a software for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere. Do

OpenDrift 167 Dec 13, 2022
Finding project directories in Python (data science) projects, just like there R rprojroot and here packages

Find relative paths from a project root directory Finding project directories in Python (data science) projects, just like there R here and rprojroot

Daniel Chen 102 Nov 16, 2022
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Transform-Invariant Non-Negative Matrix Factorization

Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn

EMD Group 6 Jul 01, 2022
follow-analyzer helps GitHub users analyze their following and followers relationship

follow-analyzer follow-analyzer helps GitHub users analyze their following and followers relationship by providing a report in html format which conta

Yin-Chiuan Chen 2 May 02, 2022
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather

Tuplex 791 Jan 04, 2023
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Example Of Splunk Search Query With Python And Splunk Python SDK

SSQAuto (Splunk Search Query Automation) Example Of Splunk Search Query With Python And Splunk Python SDK installation: ➜ ~ git clone https://github.c

AmirHoseinTangsiriNET 1 Nov 14, 2021
University Challenge 2021 With Python

University Challenge 2021 This repository contains: The TeX file of the technical write-up describing the University / HYPER Challenge 2021 under late

2 Nov 27, 2021