CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

Related tags

Deep Learningcloob
Overview

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Johannes Lehner1, David Kreil2, Michael Kopp2, Günter Klambauer1, Angela Bitto-Nemling1, Sepp Hochreiter1 2

1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria
2 Institute of Advanced Research in Artificial Intelligence (IARAI)
3 HERE Technologies
* Equal contribution


Detailed blog post on this paper at this link.

The full paper is available here.


Implementation of CLOOB

This repository contains the implemenation of CLOOB used to obtain the results reported in the paper. The implementation is based on OpenCLIP, an open source implementation of OpenAI's CLIP.

Setup

We provide an 'environment.yml' file to set up a conda environment with all required packages. Run the following command to clone the repository and create the environment.

# Clone repository and swtich into the directory
git clone https://github.com/ml-jku/cloob
cd cloob

# Create the environment and activate it
conda env create --file environment.yml
conda activate cloob

# Additionally, webdataset needs to be installed from git repo for pre-training on YFCC 
pip install git+https://github.com/tmbdev/webdataset.git

# Add the directory to the PYTHONPATH environment variable
export PYTHONPATH="$PYTHONPATH:$PWD/src"

Data

For pre-training we use the two datasets supported by OpenCLIP, namely Conceptual Captions and YFCC.

Conceptual Captions

OpenCLIP already provides a script to download and prepare the Conceptual Captions dataset, which contains 2.89M training images and 13k validation images. First, download the Conceptual Captions URLs and then run the script gather_cc.py.

python3 src/data/gather_cc.py path/to/Train_GCC-training.tsv path/to/Validation_GCC-1.1.0-Validation.tsv

YFCC

We use the same subset of ~15M images from the YFCC100M dataset as CLIP. They provide a list of (line number, photo identifier, photo hash) of each image contained in this subset here.

For more information see YFCC100m Subset on OpenAI's github.

Downstream Tasks

In the paper we report results on several downstream tasks. Except for ImageNet we provide links to already pre-processed versions (where necessary) of the respective test set.

Dataset Description Official Processed
Birdsnap This dataset contains images of North American bird species, however
our dataset is smaller than reported in CLIP as some samples are no longer available.
Link Link
Country211 This dataset was published in CLIP and is a small subset of the YFCC100m dataset.
It consists of photos that can be assigned to 211 countries via GPS coordinates.
For each country 200 photos are sampled for the training set and 100 for testing.
Link Link
Flowers102 Images of 102 flower categories commonly occuring in the United Kingdom were collected.
Several classes are very similar and there is a large variation in scale, pose and lighting.
Link Link
GTSRB This dataset was released for a challenge held at the IJCNN 2011.
The dataset contains images of german traffic signs from more than 40 classes.
Link Link
Stanford Cars This dataset contains images of 196 car models at the level of make,
model and year (e.g. Tesla Model S Sedan 2012).
Link Link
UCF101 The dataset has been created by extracting the middle frame from each video. Link Link
ImageNet This dataset spans 1000 object classes and contains 1,281,167 training images,
50,000 validation images and 100,000 test images.
Link -
ImageNet v2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. Link -

Usage

In the following there is an example command for pretraining on CC with an effective batch size of 512 when used on 4 GPUs.

/conceptual_captions/Train-GCC-training_output.csv" \ --val-data=" /conceptual_captions/Validation_GCC-1.1.0-Validation_output.csv" \ --path-data=" /conceptual_captions" \ --imagenet-val=" /imagenet/val" \ --warmup 20000 \ --batch-size=128 \ --lr=1e-3 \ --wd=0.1 \ --lr-scheduler="cosine-restarts" \ --restart-cycles=10 \ --epochs=70 \ --method="cloob" \ --init-inv-tau=30 \ --init-scale-hopfield=8 \ --workers=8 \ --model="RN50" \ --dist-url="tcp://127.0.0.1:6100" \ --batch-size-eval=512 ">
python -u src/training/main.py \
--train-data="
       
        /conceptual_captions/Train-GCC-training_output.csv
        "
        \
--val-data="
       
        /conceptual_captions/Validation_GCC-1.1.0-Validation_output.csv
        "
        \
--path-data="
       
        /conceptual_captions
        "
        \
--imagenet-val="
       
        /imagenet/val
        "
        \
--warmup 20000 \
--batch-size=128 \
--lr=1e-3 \
--wd=0.1 \
--lr-scheduler="cosine-restarts" \
--restart-cycles=10 \
--epochs=70 \
--method="cloob" \
--init-inv-tau=30 \
--init-scale-hopfield=8 \
--workers=8 \
--model="RN50" \
--dist-url="tcp://127.0.0.1:6100" \
--batch-size-eval=512

Zeroshot evaluation of downstream tasks

We provide a Jupyter notebook to perform zeroshot evaluation with a trained model.

LICENSE

MIT LICENSE

Owner
Institute for Machine Learning, Johannes Kepler University Linz
Software of the Institute for Machine Learning, JKU Linz
Institute for Machine Learning, Johannes Kepler University Linz
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022