Beyond Accuracy: Behavioral Testing of NLP models with CheckList

Overview

CheckList

This repository contains code for testing NLP Models as described in the following paper:

Beyond Accuracy: Behavioral Testing of NLP models with CheckList
Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, Sameer Singh Association for Computational Linguistics (ACL), 2020

Bibtex for citations:

 @inproceedings{checklist:acl20},  
 author = {Marco Tulio Ribeiro and Tongshuang Wu and Carlos Guestrin and Sameer Singh},  
 title = {Beyond Accuracy: Behavioral Testing of NLP models with CheckList},  
 booktitle = {Association for Computational Linguistics (ACL)},  
 year = {2020}  

Table of Contents

Installation

From pypi:

pip install checklist
jupyter nbextension install --py --sys-prefix checklist.viewer
jupyter nbextension enable --py --sys-prefix checklist.viewer

Note: --sys-prefix to install into python’s sys.prefix, which is useful for instance in virtual environments, such as with conda or virtualenv. If you are not in such environments, please switch to --user to install into the user’s home jupyter directories.

From source:

git clone [email protected]:marcotcr/checklist.git
cd checklist
pip install -e .

Either way, you need to install pytorch or tensorflow if you want to use masked language model suggestions:

pip install torch

For most tutorials, you also need to download a spacy model:

python -m spacy download en_core_web_sm

Tutorials

Please note that the visualizations are implemented as ipywidgets, and don't work on colab or JupyterLab (use jupyter notebook). Everything else should work on these though.

  1. Generating data
  2. Perturbing data
  3. Test types, expectation functions, running tests
  4. The CheckList process

Paper tests

Notebooks: how we created the tests in the paper

  1. Sentiment analysis
  2. QQP
  3. SQuAD

Replicating paper tests, or running them with new models

For all of these, you need to unpack the release data (in the main repo folder after cloning):

tar xvzf release_data.tar.gz

Sentiment Analysis

Loading the suite:

import checklist
from checklist.test_suite import TestSuite
suite_path = 'release_data/sentiment/sentiment_suite.pkl'
suite = TestSuite.from_file(suite_path)

Running tests with precomputed bert predictions (replace bert on pred_path with amazon, google, microsoft, or roberta for others):

pred_path = 'release_data/sentiment/predictions/bert'
suite.run_from_file(pred_path, overwrite=True)
suite.summary() # or suite.visual_summary_table()

To test your own model, get predictions for the texts in release_data/sentiment/tests_n500 and save them in a file where each line has 4 numbers: the prediction (0 for negative, 1 for neutral, 2 for positive) and the prediction probabilities for (negative, neutral, positive).
Then, update pred_path with this file and run the lines above.

QQP

import checklist
from checklist.test_suite import TestSuite
suite_path = 'release_data/qqp/qqp_suite.pkl'
suite = TestSuite.from_file(suite_path)

Running tests with precomputed bert predictions (replace bert on pred_path with roberta if you want):

pred_path = 'release_data/qqp/predictions/bert'
suite.run_from_file(pred_path, overwrite=True, file_format='binary_conf')
suite.visual_summary_table()

To test your own model, get predictions for pairs in release_data/qqp/tests_n500 (format: tsv) and output them in a file where each line has a single number: the probability that the pair is a duplicate.

SQuAD

import checklist
from checklist.test_suite import TestSuite
suite_path = 'release_data/squad/squad_suite.pkl'
suite = TestSuite.from_file(suite_path)

Running tests with precomputed bert predictions:

pred_path = 'release_data/squad/predictions/bert'
suite.run_from_file(pred_path, overwrite=True, file_format='pred_only')
suite.visual_summary_table()

To test your own model, get predictions for pairs in release_data/squad/squad.jsonl (format: jsonl) or release_data/squad/squad.json (format: json, like SQuAD dev) and output them in a file where each line has a single string: the prediction span.

Testing huggingface transformer pipelines

See this notebook.

Code snippets

Templates

See 1. Generating data for more details.

import checklist
from checklist.editor import Editor
import numpy as np
editor = Editor()
ret = editor.template('{first_name} is {a:profession} from {country}.',
                       profession=['lawyer', 'doctor', 'accountant'])
np.random.choice(ret.data, 3)

['Mary is a doctor from Afghanistan.',
'Jordan is an accountant from Indonesia.',
'Kayla is a lawyer from Sierra Leone.']

RoBERTa suggestions

See 1. Generating data for more details.
In template:

ret = editor.template('This is {a:adj} {mask}.',  
                      adj=['good', 'bad', 'great', 'terrible'])
ret.data[:3]

['This is a good idea.',
'This is a good sign.',
'This is a good thing.']

Multiple masks:

ret = editor.template('This is {a:adj} {mask} {mask}.',
                      adj=['good', 'bad', 'great', 'terrible'])
ret.data[:3]

['This is a good history lesson.',
'This is a good chess move.',
'This is a good news story.']

Getting suggestions rather than filling out templates:

editor.suggest('This is {a:adj} {mask}.',
               adj=['good', 'bad', 'great', 'terrible'])[:5]

['idea', 'sign', 'thing', 'example', 'start']

Getting suggestions for replacements (only a single text allowed, no templates):

editor.suggest_replace('This is a good movie.', 'good')[:5]

['great', 'horror', 'bad', 'terrible', 'cult']

Getting suggestions through jupyter visualization:

editor.visual_suggest('This is {a:mask} movie.')

visual suggest

Multilingual suggestions

Just initialize the editor with the language argument (should work with language names and iso 639-1 codes):

import checklist
from checklist.editor import Editor
import numpy as np
# in Portuguese
editor = Editor(language='portuguese')
ret = editor.template('O João é um {mask}.',)
ret.data[:3]

['O João é um português.',
'O João é um poeta.',
'O João é um brasileiro.']

# in Chinese
editor = Editor(language='chinese')
ret = editor.template('西游记的故事很{mask}。',)
ret.data[:3]

['西游记的故事很精彩。',
'西游记的故事很真实。',
'西游记的故事很经典。']

We're using FlauBERT for french, German BERT for german, and XLM-RoBERTa for everything else (click the link for a list of supported languages). We can't vouch for the quality of the suggestions in other languages, but it seems to work reasonably well for the languages we speak (although not as well as English).

Lexicons (somewhat multilingual)

editor.lexicons is a dictionary, which can be used in templates. For example:

import checklist
from checklist.editor import Editor
import numpy as np
# Default: English
editor = Editor()
ret = editor.template('{male1} went to see {male2} in {city}.', remove_duplicates=True)
list(np.random.choice(ret.data, 3))

['Dan went to see Hugh in Riverside.',
'Stephen went to see Eric in Omaha.',
'Patrick went to see Nick in Kansas City.']

Person names and location (country, city) names are multilingual, depending on the editor language. We got the data from wikidata, so there is a bias towards names on wikipedia.

editor = Editor(language='german')
ret = editor.template('{male1} went to see {male2} in {city}.', remove_duplicates=True)
list(np.random.choice(ret.data, 3))

['Rolf went to see Klaus in Leipzig.',
'Richard went to see Jörg in Marl.',
'Gerd went to see Fritz in Schwerin.']

List of available lexicons:

editor.lexicons.keys()

dict_keys(['male', 'female', 'first_name', 'first_pronoun', 'last_name', 'country', 'nationality', 'city', 'religion', 'religion_adj', 'sexual_adj', 'country_city', 'male_from', 'female_from', 'last_from'])

Some of these cannot be used directly in templates because they are themselves dictionaries. For example, male_from, female_from, last_from and country_city are dictionaries from country to male names, female names, last names and most populous cities.
You can call editor.lexicons.male_from.keys() for a list of country names. Example usage:

import numpy as np
countries = ['France', 'Germany', 'Brazil']
for country in countries:
    ts = editor.template('{male} {last} is from {city}',
                male=editor.lexicons.male_from[country],
                last=editor.lexicons.last_from[country],
                city=editor.lexicons.country_city[country],
               )
    print('Country: %s' % country)
    print('\n'.join(np.random.choice(ts.data, 3)))
    print()

Country: France
Jean-Jacques Brun is from Avignon
Bruno Deschamps is from Vitry-sur-Seine
Ernest Picard is from Chambéry

Country: Germany
Rainer Braun is from Schwerin
Markus Brandt is from Gera
Reinhard Busch is from Erlangen

Country: Brazil
Gilberto Martins is from Anápolis
Alfredo Guimarães is from Indaiatuba
Jorge Barreto is from Fortaleza

Perturbing data for INVs and DIRs

See 2.Perturbing data for more details.
Custom perturbation function:

import re
import checklist
from checklist.perturb import Perturb
def replace_john_with_others(x, *args, **kwargs):
    # Returns empty (if John is not present) or list of strings with John replaced by Luke and Mark
    if not re.search(r'\bJohn\b', x):
        return None
    return [re.sub(r'\bJohn\b', n, x) for n in ['Luke', 'Mark']]

dataset = ['John is a man', 'Mary is a woman', 'John is an apostle']
ret = Perturb.perturb(dataset, replace_john_with_others)
ret.data

[['John is a man', 'Luke is a man', 'Mark is a man'],
['John is an apostle', 'Luke is an apostle', 'Mark is an apostle']]

General purpose perturbations (see tutorial for more):

import spacy
nlp = spacy.load('en_core_web_sm')
pdataset = list(nlp.pipe(dataset))
ret = Perturb.perturb(pdataset, Perturb.change_names, n=2)
ret.data

[['John is a man', 'Ian is a man', 'Robert is a man'],
['Mary is a woman', 'Katherine is a woman', 'Alexandra is a woman'],
['John is an apostle', 'Paul is an apostle', 'Gabriel is an apostle']]

ret = Perturb.perturb(pdataset, Perturb.add_negation)
ret.data

[['John is a man', 'John is not a man'],
['Mary is a woman', 'Mary is not a woman'],
['John is an apostle', 'John is not an apostle']]

Creating and running tests

See 3. Test types, expectation functions, running tests for more details.

MFT:

import checklist
from checklist.editor import Editor
from checklist.perturb import Perturb
from checklist.test_types import MFT, INV, DIR
editor = Editor()

t = editor.template('This is {a:adj} {mask}.',  
                      adj=['good', 'great', 'excellent', 'awesome'])
test1 = MFT(t.data, labels=1, name='Simple positives',
           capability='Vocabulary', description='')

INV:

dataset = ['This was a very nice movie directed by John Smith.',
           'Mary Keen was brilliant.',
          'I hated everything about this.',
          'This movie was very bad.',
          'I really liked this movie.',
          'just bad.',
          'amazing.',
          ]
t = Perturb.perturb(dataset, Perturb.add_typos)
test2 = INV(**t)

DIR:

from checklist.expect import Expect
def add_negative(x):
    phrases = ['Anyway, I thought it was bad.', 'Having said this, I hated it', 'The director should be fired.']
    return ['%s %s' % (x, p) for p in phrases]

t = Perturb.perturb(dataset, add_negative)
monotonic_decreasing = Expect.monotonic(label=1, increasing=False, tolerance=0.1)
test3 = DIR(**t, expect=monotonic_decreasing)

Running tests directly:

from checklist.pred_wrapper import PredictorWrapper
# wrapped_pp returns a tuple with (predictions, softmax confidences)
wrapped_pp = PredictorWrapper.wrap_softmax(model.predict_proba)
test.run(wrapped_pp)

Running from a file:

# One line per example
test.to_raw_file('/tmp/raw_file.txt')
# each line has prediction probabilities (softmax)
test.run_from_file('/tmp/softmax_preds.txt', file_format='softmax', overwrite=True)

Summary of results:

test.summary(n=1)

Test cases: 400
Fails (rate): 200 (50.0%)

Example fails:
0.2 This is a good idea

Visual summary:

test.visual_summary()

visual summary

Saving and loading individual tests:

# save
test.save(path)
# load
test = MFT.from_file(path)

Custom expectation functions

See 3. Test types, expectation functions, running tests for more details.

If you are writing a custom expectation functions, it must return a float or bool for each example such that:

  • > 0 (or True) means passed,
  • <= 0 or False means fail, and (optionally) the magnitude of the failure, indicated by distance from 0, e.g. -10 is worse than -1
  • None means the test does not apply, and this should not be counted

Expectation on a single example:

def high_confidence(x, pred, conf, label=None, meta=None):
    return conf.max() > 0.95
expect_fn = Expect.single(high_confidence)

Expectation on pairs of (orig, new) examples (for INV and DIR):

def changed_pred(orig_pred, pred, orig_conf, conf, labels=None, meta=None):
    return pred != orig_pred
expect_fn = Expect.pairwise(changed_pred)

There's also Expect.testcase and Expect.test, amongst many others.
Check out expect.py for more details.

Test Suites

See 4. The CheckList process for more details.

Adding tests:

from checklist.test_suite import TestSuite
# assuming test exists:
suite.add(test)

Running a suite is the same as running an individual test, either directly or through a file:

from checklist.pred_wrapper import PredictorWrapper
# wrapped_pp returns a tuple with (predictions, softmax confidences)
wrapped_pp = PredictorWrapper.wrap_softmax(model.predict_proba)
suite.run(wrapped_pp)
# or suite.run_from_file, see examples above

To visualize results, you can call suite.summary() (same as test.summary), or suite.visual_summary_table(). This is what the latter looks like for BERT on sentiment analysis:

suite.visual_summary_table()

visual summary table

Finally, it's easy to save, load, and share a suite:

# save
suite.save(path)
# load
suite = TestSuite.from_file(path)

API reference

On readthedocs

Code of Conduct

Microsoft Open Source Code of Conduct

Owner
Marco Tulio Correia Ribeiro
Marco Tulio Correia Ribeiro
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
Large-scale pretraining for dialogue

A State-of-the-Art Large-scale Pretrained Response Generation Model (DialoGPT) This repository contains the source code and trained model for a large-

Microsoft 1.8k Jan 07, 2023
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. Flair is: A powerful NLP library. Flair allo

flair 12.3k Jan 02, 2023
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022