The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Overview

Introduction

This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is published in NeurIPS 2021.

Citation

We kindly ask anybody who uses this code to cite the following bibtex:

@inproceedings{
    ma2021finding,
    title={Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks},
    author={Chen Ma and Xiangyu Guo and Li Chen and Jun-Hai Yong and Yisen Wang},
    booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
    year={2021},
    url={https://openreview.net/forum?id=g0wang64Zjd}
}

Structure of Folders and Files

+-- configures
|   |-- HSJA.json  # the hyperparameters setting of HSJA, which is also used in Tangent Attack
+-- dataset
|   |-- dataset_loader_maker.py  # it returns the data loader class that includes 1000 attacks images for the experiments.
|   |-- npz_dataset.py  # it is the dataset class that includes 1000 attacks images for the experiments.
+-- models
|   |-- defensive_model.py # the wrapper of defensive networks (e.g., AT, ComDefend, Feature Scatter), and it converts the input image's pixels to the range of 0 to 1 before feeding.
|   |-- standard_model.py # the wrapper of standard classification networks, and it converts the input image's pixels to the range of 0 to 1 before feeding.
+-- tangent_attack_hemisphere
|   |-- attack.py  # the main class for the attack.
|   |-- tangent_point_analytical_solution.py  # the class for computing the optimal tagent point of the hemisphere.
+-- tangent_attack_semiellipsoid
|   |-- attack.py  # the main class for the attack.
|   |-- tangent_point_analytical_solution.py  # the class for computing the optimal tagent point of the semi-ellipsoid.
+-- cifar_models   # this folder includes the target models of CIFAR-10, i.e., PyramidNet-272, GDAS, WRN-28, and WRN-40 networks.
|-- config.py   # the main configuration of Tangent Attack.
|-- logs  # all the output (logs and result stats files) are located inside this folder
|-- train_pytorch_model  # the pretrained weights of target models
|-- attacked_images  # the 1000 image data for evaluation 

In general, the train_pytorch_model includes the pretrained models' weights, and attacked_images includes the image data, which is packaged into .npz format with pixel range of [0-1].

In the attack, all logs are dumped to logs folder, the statistical results are also written into logs folder, which are .json format.

Attack Command

The following command could run Tangent Attack (TA) and Generalized Tangent Attack (G-TA) on the CIFAR-10 dataset under the untargetd attack's setting:

python tangent_attack_hemisphere/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch resnet-50
python tangent_attack_hemisphere/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch gdas
python tangent_attack_semiellipsoid/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch resnet-50
python tangent_attack_semiellipsoid/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch gdas

Once the attack is running, it directly writes the log into a newly created logs folder. After attacking, the statistical result are also dumped into the same folder, which is named as *.json file.

Also, you can use the following bash shell to run the attack of different models one by one.

./tangent_attack_CIFAR_undefended_models.sh

The commmand of attacks of defense models are presented in tangent_attack_CIFAR_defense_models.sh.

  • The gpu device could be specified by the --gpu device_id argument.
  • the targeted attack can be specified by the --targeted argument. If you want to perform untargeted attack, just don't pass it.
  • the attack of defense models uses --attack_defense --defense_model adv_train/jpeg/com_defend/TRADES argument.

Requirement

Our code is tested on the following environment (probably also works on other environments without many changes):

  • Ubuntu 18.04
  • Python 3.7.3
  • CUDA 11.1
  • CUDNN 8.0.4
  • PyTorch 1.7.1
  • torchvision 0.8.2
  • numpy 1.18.0
  • pretrainedmodels 0.7.4
  • bidict 0.18.0
  • advertorch 0.1.5
  • glog 0.3.1

You can just type pip install -r requirements.txt to install packages.

Download Files of Running Results and Logs

I have uploaded all the logs and results with the compressed zip file format onto this google drive link so that you can download them.

Owner
machen
machen
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022