Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

Overview

ProGen - (wip)

Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily transferrable between the two)

Install

$ pip install progen-transformer

Usage

from jax import random
from haiku import PRNGSequence
from progen_transformer import ProGen

model = ProGen(
    num_tokens = 256,
    dim = 512,
    seq_len = 1024,
    window_size = 256,       # local attention window size
    depth = 12,              # depth
    heads = 8,               # attention heads
    dim_head = 64,           # dimension per head
    ff_glu = True,           # use GLU in feedforward, from Noam's paper
    global_mlp_depth = 2     # last N global gmlp layers
)

rng = PRNGSequence(42)
seq = random.randint(next(rng), (1024,), 0, 256)

params = model.init(next(rng), seq)
logits = model.apply(params, next(rng), seq) # (1024, 256)

Training from Uniref

Download Uniref50 from UniProt and place uniref50.fasta in the root directory

$ python gen_train_data.py

You should see a lot of green if everything succeeds. Then

$ python train.py

By default, the script will checkpoint and resume automatically, but if you wish to clear your progress and restart, just add a --new flag

$ python train.py --new

Model checkpoints will be saved periodically to ./ckpts

Todo

  • train tfrecords from google cloud storage path
  • generate validation tfrecords
  • add panda integration with GO annotations
  • resume from correct place in tfrecord even if batch size is changed inbetween runs, display number of sequences processed (aiming for 1 billion)
  • model parallelism with pjit
  • bfloat16 on xla
  • checkpoint and resume from a google cloud storage path
  • config to annotation to template string with jinja2 - use jinja2 for wandb html logging as well
  • manage experimental tracker state, and also allow ability to turn it off by piping to noop
  • add a confirmation before clearing a folder for --new run
  • engineer mask in cross entropy loss so that padding can be reused as end-of-string token
  • flip seq # annotation order with prob set in config
  • keep N last checkpoints

Citations

@misc{madani2020progen,
    title   = {ProGen: Language Modeling for Protein Generation}, 
    author  = {Ali Madani and Bryan McCann and Nikhil Naik and Nitish Shirish Keskar and Namrata Anand and Raphael R. Eguchi and Po-Ssu Huang and Richard Socher},
    year    = {2020},
    eprint  = {2004.03497},
    archivePrefix = {arXiv},
    primaryClass = {q-bio.BM}
}
@misc{su2021roformer,
    title   = {RoFormer: Enhanced Transformer with Rotary Position Embedding},
    author  = {Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu},
    year    = {2021},
    eprint  = {2104.09864},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
@misc{shazeer2020glu,
    title   = {GLU Variants Improve Transformer},
    author  = {Noam Shazeer},
    year    = {2020},
    url     = {https://arxiv.org/abs/2002.05202}
}
You might also like...
Implementation of the GVP-Transformer, which was used in the paper
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

A pytorch-version implementation codes of paper:
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

 Generative Models for Graph-Based Protein Design
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a pseudo-rigid domain.

Comments
  • protein bert uniref90 dataset

    protein bert uniref90 dataset

    (discussed in discord)

    after running the first step (create_uniref_db) of https://github.com/nadavbra/protein_bert I got a 24GB file "uniref_proteins_and_annotations.db" . It seems it could be useful for generate sequences for this project, sharing the links there

    • https://gitlab.com/rom1504/uniref data
    • colab to get the db and do a few queries https://colab.research.google.com/drive/1BGYEBDmD0yToLNou2T-t-QbJV5wCtIBz#scrollTo=21U3PpCp-pxr There are 135301051 records in the db, in a table looking like:
    CREATE TABLE "protein_annotations" (
        "index"    INTEGER,
        "tax_id"    REAL,
        "uniprot_name"    TEXT,
        "go_annotations"    TEXT,
        "flat_go_annotations"    TEXT,
        "n_go_annotations"    INTEGER,
        "complete_go_annotation_indices"    TEXT,
        "n_complete_go_annotations"    INTEGER
    );
    

    Sample look like this:

    | | index | tax_id | uniprot_name | go_annotations | flat_go_annotations | n_go_annotations | complete_go_annotation_indices | n_complete_go_annotations | |---:|--------:|-----------------:|:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------|-------------------:|:---------------------------------|----------------------------:| | 0 | 0 | 1.57204e+06 | A0A5A9P0L4_9TELE | {"GO Molecular Function": ["GO:0003755", "GO:0005524", "GO:0004672", "GO:0005509"], "GO Biological Process": [], "GO Cellular Component": []} | ["GO:0003755", "GO:0004672", "GO:0005509", "GO:0005524"] | 4 | [2761, 3561, 4193, 4205] | 4 | | 1 | 1 | 648755 | UPI0016133188 | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 2 | 2 | 1.93059e+06 | A0A410P257_9BACT | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 3 | 3 | 519421 | UPI0019403D63 | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 4 | 4 | 72004 | A0A6B0RPA5_9CETA | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": []} | ["GO:0004672", "GO:0005524"] | 2 | [3561, 4205] | 2 | | 5 | 5 | 375764 | A0A672ZWI7_9TELE | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 6 | 6 | 1.41558e+06 | A0A6P7YNV3_9AMPH | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886"] | 3 | [3561, 4205, 4526] | 3 | | 7 | 7 | 240159 | A0A4U5TZD8_COLLU | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0016021", "GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886", "GO:0016021"] | 4 | [3561, 4205, 4526, 10019] | 4 | | 8 | 8 | 146911 | UPI00074FFD9C | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 9 | 9 | 260995 | A0A6P8RG40_GEOSA | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886"] | 3 | [3561, 4205, 4526] | 3 |

    opened by rom1504 4
Releases(0.0.36)
Owner
Phil Wang
Working with Attention
Phil Wang
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023