Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

Overview

ProGen - (wip)

Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily transferrable between the two)

Install

$ pip install progen-transformer

Usage

from jax import random
from haiku import PRNGSequence
from progen_transformer import ProGen

model = ProGen(
    num_tokens = 256,
    dim = 512,
    seq_len = 1024,
    window_size = 256,       # local attention window size
    depth = 12,              # depth
    heads = 8,               # attention heads
    dim_head = 64,           # dimension per head
    ff_glu = True,           # use GLU in feedforward, from Noam's paper
    global_mlp_depth = 2     # last N global gmlp layers
)

rng = PRNGSequence(42)
seq = random.randint(next(rng), (1024,), 0, 256)

params = model.init(next(rng), seq)
logits = model.apply(params, next(rng), seq) # (1024, 256)

Training from Uniref

Download Uniref50 from UniProt and place uniref50.fasta in the root directory

$ python gen_train_data.py

You should see a lot of green if everything succeeds. Then

$ python train.py

By default, the script will checkpoint and resume automatically, but if you wish to clear your progress and restart, just add a --new flag

$ python train.py --new

Model checkpoints will be saved periodically to ./ckpts

Todo

  • train tfrecords from google cloud storage path
  • generate validation tfrecords
  • add panda integration with GO annotations
  • resume from correct place in tfrecord even if batch size is changed inbetween runs, display number of sequences processed (aiming for 1 billion)
  • model parallelism with pjit
  • bfloat16 on xla
  • checkpoint and resume from a google cloud storage path
  • config to annotation to template string with jinja2 - use jinja2 for wandb html logging as well
  • manage experimental tracker state, and also allow ability to turn it off by piping to noop
  • add a confirmation before clearing a folder for --new run
  • engineer mask in cross entropy loss so that padding can be reused as end-of-string token
  • flip seq # annotation order with prob set in config
  • keep N last checkpoints

Citations

@misc{madani2020progen,
    title   = {ProGen: Language Modeling for Protein Generation}, 
    author  = {Ali Madani and Bryan McCann and Nikhil Naik and Nitish Shirish Keskar and Namrata Anand and Raphael R. Eguchi and Po-Ssu Huang and Richard Socher},
    year    = {2020},
    eprint  = {2004.03497},
    archivePrefix = {arXiv},
    primaryClass = {q-bio.BM}
}
@misc{su2021roformer,
    title   = {RoFormer: Enhanced Transformer with Rotary Position Embedding},
    author  = {Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu},
    year    = {2021},
    eprint  = {2104.09864},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
@misc{shazeer2020glu,
    title   = {GLU Variants Improve Transformer},
    author  = {Noam Shazeer},
    year    = {2020},
    url     = {https://arxiv.org/abs/2002.05202}
}
You might also like...
Implementation of the GVP-Transformer, which was used in the paper
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

A pytorch-version implementation codes of paper:
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

 Generative Models for Graph-Based Protein Design
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a pseudo-rigid domain.

Comments
  • protein bert uniref90 dataset

    protein bert uniref90 dataset

    (discussed in discord)

    after running the first step (create_uniref_db) of https://github.com/nadavbra/protein_bert I got a 24GB file "uniref_proteins_and_annotations.db" . It seems it could be useful for generate sequences for this project, sharing the links there

    • https://gitlab.com/rom1504/uniref data
    • colab to get the db and do a few queries https://colab.research.google.com/drive/1BGYEBDmD0yToLNou2T-t-QbJV5wCtIBz#scrollTo=21U3PpCp-pxr There are 135301051 records in the db, in a table looking like:
    CREATE TABLE "protein_annotations" (
        "index"    INTEGER,
        "tax_id"    REAL,
        "uniprot_name"    TEXT,
        "go_annotations"    TEXT,
        "flat_go_annotations"    TEXT,
        "n_go_annotations"    INTEGER,
        "complete_go_annotation_indices"    TEXT,
        "n_complete_go_annotations"    INTEGER
    );
    

    Sample look like this:

    | | index | tax_id | uniprot_name | go_annotations | flat_go_annotations | n_go_annotations | complete_go_annotation_indices | n_complete_go_annotations | |---:|--------:|-----------------:|:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------|-------------------:|:---------------------------------|----------------------------:| | 0 | 0 | 1.57204e+06 | A0A5A9P0L4_9TELE | {"GO Molecular Function": ["GO:0003755", "GO:0005524", "GO:0004672", "GO:0005509"], "GO Biological Process": [], "GO Cellular Component": []} | ["GO:0003755", "GO:0004672", "GO:0005509", "GO:0005524"] | 4 | [2761, 3561, 4193, 4205] | 4 | | 1 | 1 | 648755 | UPI0016133188 | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 2 | 2 | 1.93059e+06 | A0A410P257_9BACT | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 3 | 3 | 519421 | UPI0019403D63 | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 4 | 4 | 72004 | A0A6B0RPA5_9CETA | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": []} | ["GO:0004672", "GO:0005524"] | 2 | [3561, 4205] | 2 | | 5 | 5 | 375764 | A0A672ZWI7_9TELE | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 6 | 6 | 1.41558e+06 | A0A6P7YNV3_9AMPH | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886"] | 3 | [3561, 4205, 4526] | 3 | | 7 | 7 | 240159 | A0A4U5TZD8_COLLU | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0016021", "GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886", "GO:0016021"] | 4 | [3561, 4205, 4526, 10019] | 4 | | 8 | 8 | 146911 | UPI00074FFD9C | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 9 | 9 | 260995 | A0A6P8RG40_GEOSA | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886"] | 3 | [3561, 4205, 4526] | 3 |

    opened by rom1504 4
Releases(0.0.36)
Owner
Phil Wang
Working with Attention
Phil Wang
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022