OptNet: Differentiable Optimization as a Layer in Neural Networks

Overview

OptNet: Differentiable Optimization as a Layer in Neural Networks

This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch source code to reproduce the experiments in our ICML 2017 paper OptNet: Differentiable Optimization as a Layer in Neural Networks.

If you find this repository helpful in your publications, please consider citing our paper.

@InProceedings{amos2017optnet,
  title = {{O}pt{N}et: Differentiable Optimization as a Layer in Neural Networks},
  author = {Brandon Amos and J. Zico Kolter},
  booktitle = {Proceedings of the 34th International Conference on Machine Learning},
  pages = {136--145},
  year = {2017},
  volume = {70},
  series = {Proceedings of Machine Learning Research},
  publisher ={PMLR},
}

Informal Introduction

Mathematical optimization is a well-studied language of expressing solutions to many real-life problems that come up in machine learning and many other fields such as mechanics, economics, EE, operations research, control engineering, geophysics, and molecular modeling. As we build our machine learning systems to interact with real data from these fields, we often cannot (but sometimes can) simply ``learn away'' the optimization sub-problems by adding more layers in our network. Well-defined optimization problems may be added if you have a thorough understanding of your feature space, but oftentimes we don't have this understanding and resort to automatic feature learning for our tasks.

Until this repository, no modern deep learning library has provided a way of adding a learnable optimization layer (other than simply unrolling an optimization procedure, which is inefficient and inexact) into our model formulation that we can quickly try to see if it's a nice way of expressing our data.

See our paper OptNet: Differentiable Optimization as a Layer in Neural Networks and code at locuslab/optnet if you are interested in learning more about our initial exploration in this space of automatically learning quadratic program layers for signal denoising and sudoku.

Setup and Dependencies

  • Python/numpy/PyTorch
  • qpth: Our fast QP solver for PyTorch released in conjunction with this paper.
  • bamos/block: Our intelligent block matrix library for numpy, PyTorch, and beyond.
  • Optional: bamos/setGPU: A small library to set CUDA_VISIBLE_DEVICES on multi-GPU systems.

Denoising Experiments

denoising
├── create.py - Script to create the denoising dataset.
├── plot.py - Plot the results from any experiment.
├── main.py - Run the FC baseline and OptNet denoising experiments. (See arguments.)
├── main.tv.py - Run the TV baseline denoising experiment.
└── run-exps.sh - Run all experiments. (May need to uncomment some lines.)

Sudoku Experiments

  • The dataset we used in our experiments is available in sudoku/data.
sudoku
├── create.py - Script to create the dataset.
├── plot.py - Plot the results from any experiment.
├── main.py - Run the FC baseline and OptNet Sudoku experiments. (See arguments.)
└── models.py - Models used for Sudoku.

Classification Experiments

cls
├── train.py - Run the FC baseline and OptNet classification experiments. (See arguments.)
├── plot.py - Plot the results from any experiment.
└── models.py - Models used for classification.

Acknowledgments

The rapid development of this work would not have been possible without the immense amount of help from the PyTorch team, particularly Soumith Chintala and Adam Paszke.

Licensing

Unless otherwise stated, the source code is copyright Carnegie Mellon University and licensed under the Apache 2.0 License.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
A PyTorch implementation of L-BFGS.

PyTorch-LBFGS: A PyTorch Implementation of L-BFGS Authors: Hao-Jun Michael Shi (Northwestern University) and Dheevatsa Mudigere (Facebook) What is it?

Hao-Jun Michael Shi 478 Dec 27, 2022
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch

lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame

Liam 318 Dec 09, 2022
Model summary in PyTorch similar to `model.summary()` in Keras

Keras style model.summary() in PyTorch Keras has a neat API to view the visualization of the model which is very helpful while debugging your network.

Shubham Chandel 3.7k Dec 29, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 03, 2023
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 07, 2023
Bunch of optimizer implementations in PyTorch

Bunch of optimizer implementations in PyTorch

Hyeongchan Kim 76 Jan 03, 2023
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations

PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently

Matthias Fey 757 Jan 04, 2023
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
On the Variance of the Adaptive Learning Rate and Beyond

RAdam On the Variance of the Adaptive Learning Rate and Beyond We are in an early-release beta. Expect some adventures and rough edges. Table of Conte

Liyuan Liu 2.5k Dec 27, 2022
Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Fangjun Kuang 119 Jan 03, 2023
Tutorial for surrogate gradient learning in spiking neural networks

SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started

Friedemann Zenke 203 Nov 28, 2022
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

Terence Parr 704 Dec 14, 2022
TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards

TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards. It can reduce GPU memory and scale up the training when the model has massive linear layers (e.g., ViT, BERT and

Kaiyu Yue 275 Nov 22, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i

Kevin Musgrave 5k Jan 02, 2023
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 05, 2023
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision

🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

Hugging Face 3.5k Jan 08, 2023
Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS

(Generic) EfficientNets for PyTorch A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter ef

Ross Wightman 1.5k Jan 01, 2023