An Insurance firm providing tour insurance is facing higher claim frequency

Overview

Insurance-Claim

An Insurance firm providing tour insurance is facing higher claim frequency. Data is collected from the past few years. Made a model which predicts the claim status using CART, RF & ANN and compare the models' performances in train and test sets.

EDA

Dataset has 10 variables and 3000 instances. 2 variables are float type and 2 are integer type. There are 6 object-type variables which need to be converted to numeric form. From the above data, it is evident that no null values are present in the data. The shape of the dataset is 3000,10.

Using the describe() function in Python, a summary of all the parameters can be obtained. Asia seems to have the most insurance claims. After the removal of the duplicated data, the outliers were calculated. The outliers were not treated since all numeric values have them and can be taken care of in random forest classification.

Pairplot was performed to check continuous variables Heatmap was performed to check correlation

Decision tree in Python can take only numerical / categorical colums. It cannot take string / object types. The feature statement loops through each column and checks if the column type is object then converts those columns into categorical with each distinct value becoming a category.

Split the data into test and train, to build classification model CART, Random Forest, Artificial Neural Network.

Built a decision tree and found the variable importance and predicted the test data. Added tuning parameters to regulise the decision tree and found the variable importance again. Found the prediting probabilities

Random Forest

Treated the model for outliers Predicted test and train data with RF model

MLP Classifier

Predicted using the training and testing data

ROC_AUC

Checked the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model.

Analysis

Looking at the model, more data will help us understand and predict models better. Streamlining online experiences benefitted customers, leading to an increase in conversions, which subsequently raised profits. As per the data 90% of insurance is done by online channel. Other interesting fact, is almost all the offline business has a claimed associated with it. Need to train the JZI agency resources to pick up sales as they are in bottom, need to run promotional marketing campaign or evaluate if we need to tie up with alternate agency. Also based on the model we are getting 80% accuracy, so we need customer books airline tickets or plans, cross sell the insurance based on the claim data pattern. Other interesting fact is more sales happen via Agency than Airlines and the trend shows the claim are processed more at Airline. So, we may need to dive deeper to understand the workflow. Key performance indicators (KPI) will increase customer satisfaction which in fact will give more revenue, combat fraud transactions, deploy measures to avoid fraudulent transactions at earliest as well as optimize claim-recovery method. It will also reduce the claim handling costs

Owner
MSBA Graduate Student at University of Illinois at Chicago | Passionate Analyst | SQL | Python | R programming | Tableau | Haddop
🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.

Streamlit Pydantic Auto-generate Streamlit UI elements from Pydantic models. Getting Started • Documentation • Support • Report a Bug • Contribution •

Lukas Masuch 103 Dec 25, 2022
Simplified web browser made in python for a college project

Python browser Simplified web browser made in python for a college project. Web browser has bookmarks, history, multiple tabs, toolbar. It was made on

AmirHossein Mohammadi 9 Jul 25, 2022
a url shortener with fastapi and tortoise-orm

fastapi-tortoise-orm-url-shortener a url shortener with fastapi and tortoise-orm

19 Aug 12, 2022
用于红队成员初步快速攻击的全自动化工具。

关于 Author:m0sway Mail:[email protected] Github:https://www.github.com/m0sway/Jud JuD是

m0sway 46 Jul 21, 2022
Goal: Enable awesome tooling for Bazel users of the C language family.

Hedron's Compile Commands Extractor for Bazel — User Interface What is this project trying to do for me? First, provide Bazel users cross-platform aut

Hedron Vision 290 Dec 26, 2022
Its a simple and fun to use application. You can make your own quizes and send the lik of the quiz to your friends.

Quiz Application Its a simple and fun to use application. You can make your own quizes and send the lik of the quiz to your friends. When they would a

Atharva Parkhe 1 Feb 23, 2022
This is a survey of python's async concurrency features by example.

Survey of Python's Async Features This is a survey of python's async concurrency features by example. The purpose of this survey is to demonstrate tha

Tyler Lovely 4 Feb 10, 2022
A simple streamlit webapp with multiple functionality

A simple streamlit webapp with multiple functionality

Omkar Pramod Hankare 2 Nov 24, 2021
Low-level Python CFFI Bindings for Argon2

Low-level Python CFFI Bindings for Argon2 argon2-cffi-bindings provides low-level CFFI bindings to the Argon2 password hashing algorithm including a v

Hynek Schlawack 4 Dec 15, 2022
A QGIS integration plugin for Kart repositories

QGIS Kart Plugin A plugin to work with Kart repositories Installation The Kart plugin is available in the QGIS Plugins server. To install the latest v

Koordinates 27 Jan 04, 2023
A MCPI hack with many features.

Morpheus 2.0 A MCPI hack with many features To Use: You will need to install the keyboard, pysimplegui, and MCPI python modules and you will need to e

11 Oct 11, 2022
Example code for the book Fluent Python, 1st Edition (O'Reilly, 2015)

Fluent Python, First Edition: example code This repository is archived and will not be updated.

Fluent Python 5.4k Jan 09, 2023
适用于HoshinoBot下的雀魂插件。可进行近期对局查询、查询个人数据等功能,更多功能正在扩展

Majsoul_bot This is a Majsoul plugin for HoshinoBot 这是一个HoshinoBot的雀魂相关插件 本项目目前正在扩展,后续会扩展更多功能,敬请期待 前言 项目地址:https://github.com/DaiShengSheng/Majsoul_bo

黛笙笙 33 Dec 14, 2022
ELF file deserializer and serializer library

elfo ELF file deserializer and serializer library. import elfo elf = elfo.ELF.from_path('main') elf ELF( header=ELFHeader( e_ident=e

Filipe Laíns 3 Aug 23, 2021
Pymon is like nodemon but it is for python,

Pymon is like nodemon but it is for python,

Swaraj Puppalwar 2 Jun 11, 2022
Telegram bot for Urban Dictionary.

Urban Dictionary Bot @TheUrbanDictBot A star ⭐ from you means a lot to us! Telegram bot for Urban Dictionary. Usage Deploy to Heroku Tap on above butt

Stark Bots 17 Nov 24, 2022
Uma moeda simples e segura!

SecCoin - Documentação A SecCoin foi criada com intuito de ser uma moeda segura, de fácil investimento e mineração. A Criptomoeda está na sua primeira

Sec-Coin Team 5 Dec 09, 2022
Python interface to ISLEX, an English IPA pronunciation dictionary with syllable and stress marking.

pysle Questions? Comments? Feedback? Pronounced like 'p' + 'isle'. An interface to a pronunciation dictionary with stress markings (ISLEX - the intern

Tim 38 Dec 14, 2022
Ice Skating Simulator for Winter and Christmas [yay]

Ice Skating Simulator for Winter and Christmas [yay]

1 Aug 21, 2022
Linux Pressure Stall Information (PSI) Status App

Linux Pressure Stall Information (PSI) Status App psistat is a simple python3 program to display the PSIs and to capture/display exception events. psi

Joe D 3 Sep 18, 2022