Implementation of EAST scene text detector in Keras

Overview

EAST: An Efficient and Accurate Scene Text Detector

This is a Keras implementation of EAST based on a Tensorflow implementation made by argman.

The original paper by Zhou et al. is available on arxiv.

  • Only RBOX geometry is implemented
  • Differences from the original paper
    • Uses ResNet-50 instead of PVANet
    • Uses dice loss function instead of balanced binary cross-entropy
    • Uses AdamW optimizer instead of the original Adam

The implementation of AdamW optimizer is borrowed from this repository.

The code should run under both Python 2 and Python 3.

Requirements

Keras 2.0 or higher, and TensorFlow 1.0 or higher should be enough.

The code should run with Keras 2.1.5. If you use Keras 2.2 or higher, you have to remove ZeroPadding2D from the model.py file. Specifically, replace the line containing ZeroPadding2D with x = concatenate([x, resnet.get_layer('activation_10').output], axis=3).

I will add a list of packages and their versions under which no errors should occur later.

Data

You can use your own data, but the annotation files need to conform the ICDAR 2015 format.

ICDAR 2015 dataset can be downloaded from this site. You need the data from Task 4.1 Text Localization.
You can also download the MLT dataset, which uses the same annotation style as ICDAR 2015, there.

Alternatively, you can download a training dataset consisting of all training images from ICDAR 2015 and ICDAR 2013 datasets with annotation files in ICDAR 2015 format here.
You can also get a subset of validation images from the MLT 2017 dataset containing only images with text in the Latin alphabet for validation here.
The original datasets are distributed by the organizers of the Robust Reading Competition and are licensed under the CC BY 4.0 license.

Training

You need to put all of your training images and their corresponding annotation files in one directory. The annotation files have to be named gt_IMAGENAME.txt.
You also need a directory for validation data, which requires the same structure as the directory with training images.

Training is started by running train.py. It accepts several arguments including path to training and validation data, and path where you want to save trained checkpoint models. You can see all of the arguments you can specify in the train.py file.

Execution example

python train.py --gpu_list=0,1 --input_size=512 --batch_size=12 --nb_workers=6 --training_data_path=../data/ICDAR2015/train_data/ --validation_data_path=../data/MLT/val_data_latin/ --checkpoint_path=tmp/icdar2015_east_resnet50/

You can download a model trained on ICDAR 2015 and 2013 here. It achieves 0.802 F-score on ICDAR 2015 test set. You also need to download this JSON file of the model to be able to use it.

Test

The images you want to classify have to be in one directory, whose path you have to pass as an argument. Classification is started by running eval.py with arguments specifying path to the images to be classified, the trained model, and a directory which you want to save the output in.

Execution example

python eval.py --gpu_list=0 --test_data_path=../data/ICDAR2015/test/ --model_path=tmp/icdar2015_east_resnet50/model_XXX.h5 --output_dir=tmp/icdar2015_east_resnet50/eval/

Detection examples

image_1 image_2 image_3 image_4 image_5 image_6 image_7 image_8 image_9

Owner
Jan Zdenek
Jan Zdenek
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 30, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

RaVAEn The RaVÆn system We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variationa

SpaceML 35 Jan 05, 2023
Responsive Doc. scanner using U^2-Net, Textcleaner and Tesseract

Responsive Doc. scanner using U^2-Net, Textcleaner and Tesseract Toolset U^2-Net is used for background removal Textcleaner is used for image cleaning

3 Jul 13, 2022
Tensorflow-based CNN+LSTM trained with CTC-loss for OCR

Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo

Jerod Weinman 489 Dec 21, 2022
🔎 Like Chardet. 🚀 Package for encoding & language detection. Charset detection.

Charset Detection, for Everyone 👋 The Real First Universal Charset Detector A library that helps you read text from an unknown charset encoding. Moti

TAHRI Ahmed R. 332 Dec 31, 2022
OCR system for Arabic language that converts images of typed text to machine-encoded text.

Arabic OCR OCR system for Arabic language that converts images of typed text to machine-encoded text. The system currently supports only letters (29 l

Hussein Youssef 144 Jan 05, 2023
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
One Metrics Library to Rule Them All!

onemetric Installation Install onemetric from PyPI (recommended): pip install onemetric Install onemetric from the GitHub source: git clone https://gi

Piotr Skalski 49 Jan 03, 2023
Driver Drowsiness Detection with OpenCV & Dlib

In this project, we have built a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.

Mansi Mishra 4 Oct 26, 2022
Python tool that takes the OCR.space JSON output as input and draws a text overlay on top of the image.

OCR.space OCR Result Checker = Draw OCR overlay on top of image Python tool that takes the OCR.space JSON output as input, and draws an overlay on to

a9t9 4 Oct 18, 2022
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
FastOCR is a desktop application for OCR API.

FastOCR FastOCR is a desktop application for OCR API. Installation Arch Linux fastocr-git @ AUR Build from AUR or install with your favorite AUR helpe

Bruce Zhang 58 Jan 07, 2023
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

4 Nov 06, 2022
TextBoxes re-implement using tensorflow

TextBoxes-TensorFlow TextBoxes re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modified ba

Gu Xiaodong 44 Dec 29, 2022
Random maze generator and solver

Maze Generator and Solver I wrote a maze generator that works with two commonly known algorithms: Depth First Search and Randomized Prims. Both of the

Daniel Pérez 10 Sep 23, 2022
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
Creating a virtual tv using opencv in python3.

Virtual-TV Creating a virtual tv using opencv in python3. In order to run the code follow the below given steps: Make sure the desired videos which ar

Vamsi 1 Jan 01, 2022
The Open Source Framework for Machine Vision

SimpleCV Quick Links: About Installation [Docker] (#docker) Ubuntu Virtual Environment Arch Linux Fedora MacOS Windows Raspberry Pi SimpleCV Shell Vid

Sight Machine 2.6k Dec 31, 2022
Introduction to Augmented Reality (AR) with Python 3 and OpenCV 4.2.

Introduction to Augmented Reality (AR) with Python 3 and OpenCV 4.2.

fernanda rodríguez 85 Jan 02, 2023