Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Overview

MORTGAGE LOAN AQUISITION REQUIREMENT

This entire project encompasses both Data Analysis and Machine Learning. It was carefully structured and compiled for easy understanding.

Installation:

To run this notebook you can either install.

  • Download anaconda from anaconda site this have almost all dependencies pre-installed. Feel free to use any environment of choice

Dependencies:

Personal project | Mortgage loan elegibility prediction

The Home Mortgage Disclosure Act (HMDA) requires many financial institutions to maintain, report, and publicly disclose information about mortgages. These public data are important because:

    • they help show whether lenders are serving the housing needs of their communities.
    • help authourities to determine and fish out all predatory act of lending.
    • they give public officials information that helps them make decisions and policies.
    • They shed light on lending patterns that could be discriminatory. Eg. a reported increase in mortgage borrowing by blacks and Hispanics as of 1993.

On my Kaggle site My Homepage.

Goal for this Notebook:

Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities. This is aimed for those looking to get into the field Data Science or those who are already in the field and looking to solve a real world project with python.

This Notebook will teach the following:

Data Handling

  • Importing Data with Pandas
  • Cleaning Data
  • Exploring Data through Visualizations with Matplotlib
  • Doing predictive Analysis with various Machine Learning Algorithms

Data Analysis/Machine Learning

  • Supervised Machine learning Techniques: + RandomForestClassifier + StratifiedKfold ( 5 folds) + ETC

Valuation of the Analysis

  • K-folds cross validation to valuate results locally
  • Output the results from the IPython Notebook to Kaggle

Results obtained

  • Was able to derive excerpt insights to give pro recommendation to borrowers
  • Was able to predict applicant loan approval with 74% accuracy
Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.

weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we

Jeremy Singer-Vine 98 Dec 31, 2022
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
Shot notebooks resuming the main functions of GeoPandas

Shot notebooks resuming the main functions of GeoPandas, 2 notebooks written as Exercises to apply these functions.

1 Jan 12, 2022
Toolchest provides APIs for scientific and bioinformatic data analysis.

Toolchest Python Client Toolchest provides APIs for scientific and bioinformatic data analysis. It allows you to abstract away the costliness of runni

Toolchest 11 Jun 30, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video. You can chose the cha

2 Jul 22, 2022
Bigdata Simulation Library Of Dream By Sandman Books

BIGDATA SIMULATION LIBRARY OF DREAM BY SANDMAN BOOKS ================= Solution Architecture Description In the realm of Dreaming, its ruler SANDMAN,

Maycon Cypriano 3 Jun 30, 2022
Orchest is a browser based IDE for Data Science.

Orchest is a browser based IDE for Data Science. It integrates your favorite Data Science tools out of the box, so you don’t have to. The application is easy to use and can run on your laptop as well

Orchest 3.6k Jan 09, 2023
Python reader for Linked Data in HDF5 files

Linked Data are becoming more popular for user-created metadata in HDF5 files.

The HDF Group 8 May 17, 2022
MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data.

MetPy MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data. MetPy follows semantic versioni

Unidata 971 Dec 25, 2022
Detecting Underwater Objects (DUO)

Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by ad

27 Dec 12, 2022
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
Repository created with LinkedIn profile analysis project done

EN/en Repository created with LinkedIn profile analysis project done. The datase

Mayara Canaver 4 Aug 06, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
Flexible HDF5 saving/loading and other data science tools from the University of Chicago

deepdish Flexible HDF5 saving/loading and other data science tools from the University of Chicago. This repository also host a Deep Learning blog: htt

UChicago - Department of Computer Science 255 Dec 10, 2022
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022