Leaf: Multiple-Choice Question Generation

Overview

Leaf: Multiple-Choice Question Generation

Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The application accepts a short passage of text and uses two fine-tuned T5 Transformer models to first generate multiple question-answer pairs corresponding to the given text, after which it uses them to generate distractors - additional options used to confuse the test taker.

question generation process

Originally inspired by a Bachelor's machine learning course (github link) and then continued as a topic for my Master's thesis at Sofia University, Bulgaria.

ECIR 2022 Demonstration paper

This work has been accepted as a demo paper for the ECIR 2022 conference.

Video demonstration: here

Live demo: coming soon

Paper: will be uploaded before the conference - 14th April 2022

Abstract: Testing with quiz questions has proven to be an effective strategy for better educational processes. However, manually creating quizzes is a tedious and time-consuming task. To address this challenge, we present Leaf, a system for generating multiple-choice questions from factual text. In addition to being very well suited for classroom settings, Leaf could be also used in an industrial setup, e.g., to facilitate onboarding and knowledge sharing, or as a component of chatbots, question answering systems, or Massive Open Online Courses (MOOCs).

Generating question and answer pairs

To generate the question-answer pairs we have fine-tuned a T5 transformer model from huggingface on the SQuAD1.1. dataset which is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles.

The model accepts the target answer and context as input:

'answer' + '
   
     + 'context' 

   

and outputs a question that answers the given answer for the corresponding text.

'answer' + '
   
     + 'question' 

   

To allow us to generate question-answer pairs without providing a target answer, we have trained the algorithm to do so when in place of the target answer the '[MASK]' token is passed.

'[MASK]' + '
   
     + 'context' 

   

The full training script can be found in the training directory or accessed directly in Google Colab.

Generating incorrect options (distractors)

To generate the distractors, another T5 transformer model has been fine-tuned. This time using the RACE dataset which consists of more than 28,000 passages and nearly 100,000 questions. The dataset is collected from English examinations in China, which are designed for middle school and high school students.

The model accepts the target answer, question and context as input:

'answer' + '
   
     + 'question' + 'context' 

   

and outputs 3 distractors separated by the ' ' token.

'distractor1' + '
   
     + 'distractor2' + '
    
      'distractor3' 

    
   

The full training script can be found in the training directory or accessed directly in Google Colab.

To extend the variety of distractors with simple words that are not so closely related to the context, we have also used sense2vec word embeddings in the cases where the T5 model does not good enough distractors.

Web application

To demonstrate the algorithm, a simple Angular web application has been created. It accepts the given paragraph along with the desired number of questions and outputs each generated question with the ability to redact them (shown below). The algorithm is exposing a simple REST API using flask which is consumed by the web app.

question generation process

The code for the web application is located in a separated repository here.

Installation guide

Creating a virtual environment (optional)

To avoid any conflicts with python packages from other projects, it is a good practice to create a virtual environment in which the packages will be installed. If you do not want to this you can skip the next commands and directly install the the requirements.txt file.

Create a virtual environment :

python -m venv venv

Enter the virtual environment:

Windows:

. .\venv\Scripts\activate

Linux or MacOS

source .\venv\Scripts\activate

Installing packages

pip install -r .\requirements.txt 

Downloading data

Question-answer model

Download the multitask-qg-ag model checkpoint and place it in the app/ml_models/question_generation/models/ directory.

Distractor generation

Download the race-distractors model checkpoint and place it in the app/ml_models/distractor_generation/models/ directory.

Download sense2vec, extract it and place the s2v_old folder and place it in the app/ml_models/sense2vec_distractor_generation/models/ directory.

Training on your own

The training scripts are available in the training directory. You can download the notebooks directly from there or open the Question-Answer Generation and Distractor Generation in Google Colab.

Owner
Kristiyan Vachev
Kristiyan Vachev
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022