Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Related tags

Deep Learninggeppo
Overview

Generalized Proximal Policy Optimization with Sample Reuse

This repository is the official implementation of the reinforcement learning algorithm Generalized Proximal Policy Optimization with Sample Reuse (GePPO), which was introduced in the NeurIPS 2021 paper with the same name.

GePPO improves the sample efficiency of the popular on-policy algorithm PPO through principled sample reuse, while still retaining PPO's approximate policy improvement guarantees. GePPO is theoretically supported by a generalized policy improvement lower bound that can be approximated using data from all recent policies.

Requirements

The source code requires the following packages to be installed (we have included the version used to produce the results found in the paper in parentheses):

  • python (3.7.7)
  • gurobi (9.0.2)
  • gym (0.17.1)
  • matplotlib (3.1.3)
  • mujoco-py (1.50.1.68)
  • numpy (1.18.1)
  • scipy (1.4.1)
  • seaborn (0.10.1)
  • tensorflow (2.1.0)

See the file environment.yml for the conda environment used to run our experiments, which can be built with conda using the command conda env create.

The MuJoCo environments used in our experiments require the MuJoCo physics engine and a MuJoCo license. Please see the MuJoCo website for more information on downloading MuJoCo and obtaining a license.

Our implementation of GePPO uses Gurobi to determine the optimal policy weights used in the algorithm, which requires a Gurobi license. Please see the Gurobi website for more information on downloading Gurobi and obtaining a license. Alternatively, GePPO can be run without Gurobi by using uniform policy weights with the --uniform option.

Training

Simulations can be run by calling run on the command line. For example, we can run simulations on the HalfCheetah-v3 environment with PPO and GePPO as follows:

python -m geppo.run --env_name HalfCheetah-v3 --alg_name ppo
python -m geppo.run --env_name HalfCheetah-v3 --alg_name geppo

By default, all algorithm hyperparameters are set to the default values used in the paper. Hyperparameters can be changed to non-default values by using the relevant option on the command line. For more information on the inputs accepted by run, use the --help option.

The results of simulations are saved in the logs/ folder upon completion.

Evaluation

The results of simulations saved in the logs/ folder can be visualized by calling plot on the command line:

python -m geppo.plot --ppo_file <filename> --geppo_file <filename>

By default, this command saves a plot of average performance throughout training in the figs/ folder. Other metrics can be plotted using the --metric option. For more information on the inputs accepted by plot, use the --help option.

Owner
Jimmy Queeney
Jimmy Queeney
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021