Visualization of numerical optimization algorithms

Overview

Visualization of numerical optimization algorithms

Numerical optimization is one of the core math foundations in image processing and machine learning. But I remember in the beginning of my Ph.D. years, the math behind always made me frustrated πŸ™ πŸ™ .

During the winter vacation of 2016, I decided to make a change. I revisited some well-known optimization methods (e.g., Gradient Descent, Newton/Quasi-Newton Method, ALM, etc.), and made a series of GIF visualizations to show how these algorithms behave dynamically. Check out this repository and hope it can help you better understand these algorithms.

Gradient Descent Methods.

Fixed step size: Step size=0.5.

Fixed step size: Step size=0.1.

Fixed step size: Step size=1.

Gradient decent with the Nesterov Momentum.

Steepest Descent Method. The step size is determined by using line-search towards the gradient decent direction. The "zigzag" trajectory may cause slow convergence at ill-conditioned regions.

Conjugate Gradient Descent and Coordinate Descent Methods.

Fletcher-Reeves (FR). The FR conjugate gradient method may have very slow convergence rate if the step size is not well controlled.

Polakhe-Ribiere-Polyak (RPR). The PRP method is usually better than FR for ill-conditioned problems. Note that although it is called a "conjugate" method, the update direction (red line) is usually not vertical to the true gradient direction (black line).

Coordinate Descent. The coordinate descent method selects only one coordinate at one time for update. The well-known LibLinear package incorporates this idea to solve the linear SVM. In ill-conditioned regions, this algorithm may also face the "zigzag-step" problem.

Newton Methods.

Basic Newton Method. The black curve is the contour of the 2nd order approximation of the objective function. As the Hessian matrix at the initial point is non-positive, the optimization is not stable at very early steps.

Levenbery-Marquardt (LM) Method. LM method improves the stability of the basic Newton method by adding a small diagonal matrix to the Hessian matrix. This algorithm also can be seen as an integration of the basic Newton method and the gradient descent method.

Damped Newton Method. Damped Newton method can be viewed as a combination of the basic Newton method and the line-search based method. In spite of the fact that the Hessian matrix may be non-positive, the convergance can still be guaranteed.

Broyden Fletcher Goldfarb Shanno (BFGS). The BFGS method is the representative of quasi-Newton methods. It takes the first order gradients to approximate the Hessian matrix. In this figure, the red curve represents the true second-order information, while the black curve represents an approximated one by using BFGS.

Gaussian Newton Least Square Method (GNLS). The Gaussian-Newton least square method is a classical algorithm for solving nonlinear least squares regression problems. The essence of this algorithm is to use the first order Jacobian matrix (black curve) as an approximation of the Hessian matrix (red curve).

Random search algorithm

Genetic Algorithm (GA). GA is a classical algorithm to solve non-convex optimization problems. The key to this algorithm can be summarized as: "breeding", "mutation" and "natural selection". In this figure, the green scatters represent the descendants and the red ones represent the result of natural selection.

Simulated Annealing Algorithm (SAA). SAA is another kind of classical algorithm to solve nonconvex optimization problems. In this figure, the red curve on the right corresponds to the "temperature" and the blue curve corresponds to the objective function value. The objective function value converges with the decrease of the temperature.

Constrained Optimization Method

Gradient Projection Method (GPM). GPM is the most straight-forward way to solve a constrained optimization problem. In each interation, the gradient is projected to the feasible domain to make the current point satisfies the constraints.

Exterior-Point Penalty Method. The exterior-point penalty method is a classical way to solve constrained optimization problems. The key to this algorithm is to penalize the objective function outside the feasible domain so that to convert the original constrained problem into an unconstrained one. Note that the objectve may become ill-conditioned at the boundary of the constraints.

Inner-Point Barrier Method. The Inner-Point Barrier Method is another classical way to solve constrained optimization problems. Different from the exterior-point penalty methods where the objective is penalized outside the feasible region, the inner-point barrier method constructs a barrier function at the boundary of the feasible domain so that to prevent crossing the boundary. Similar to the exterior-point penalty method, the objectve may become ill-conditioned at the boundary of the constraints.

Lagrange Dual Ascent Method. By adding a Lagrangian multiplier, any constrained problem can be equally converted to an unconstrained max-min problem . In the Lagrange Dual Ascent Method, the variable x and the Lagrangian multiplier coefficient are alternately updated. Note that when the background color changes, the Lagrangian multiplier started to be taken into consideration during the updates.

Augmented Lagrangian Method (ALM). ALM is designed based on the Lagrange Dual Ascent Method by adding a penalty function as Augmented Lagrangian multipliers. ALM is more robust at ill-conditioned regions, e.g., at the boundary of constraints.

"keep Calm and Don't Overfit."

Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
LinkedIn connections analyzer

LinkedIn Connections Analyzer πŸ”— https://linkedin-analzyer.herokuapp.com Hey hey πŸ‘‹ , welcome to my LinkedIn connections analyzer. I recently found ou

Okkar Min 5 Sep 13, 2022
Generate knowledge graphs with interesting geometries, like lattices

Geometric Graphs Generate knowledge graphs with interesting geometries, like lattices. Works on Python 3.9+ because it uses cool new features. Get out

Charles Tapley Hoyt 5 Jan 03, 2022
Streamlit-template - A streamlit app template based on streamlit-option-menu

streamlit-template A streamlit app template for geospatial applications based on

Qiusheng Wu 41 Dec 10, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Keir&'s Visualizing Data on Life Expectancy

Keir's Visualizing Data on Life Expectancy Below is information on life expectancy in the United States from 1900-2017. You will also find information

9 Jun 06, 2022
Cartopy - a cartographic python library with matplotlib support

Cartopy is a Python package designed to make drawing maps for data analysis and visualisation easy. Table of contents Overview Get in touch License an

1.2k Jan 01, 2023
A Python library for plotting hockey rinks with Matplotlib.

Hockey Rink A Python library for plotting hockey rinks with Matplotlib. Installation pip install hockey_rink Current Rinks The following shows the cus

24 Jan 02, 2023
DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

1 Jan 03, 2022
🐞 πŸ“Š Ladybug extension to generate 2D charts

ladybug-charts Ladybug extension to generate 2D charts. Installation pip install ladybug-charts QuickStart import ladybug_charts API Documentation Loc

Ladybug Tools 3 Dec 30, 2022
Altair extension for saving charts in a variety of formats.

Altair Saver This packge provides extensions to Altair for saving charts to a variety of output types. Supported output formats are: .json/.vl.json: V

Altair 85 Dec 09, 2022
An XLSX spreadsheet renderer for Django REST Framework.

drf-renderer-xlsx provides an XLSX renderer for Django REST Framework. It uses OpenPyXL to create the spreadsheet and returns the data.

The Wharton School 166 Dec 01, 2022
Gesture controlled media player

Media Player Gesture Control Gesture controller for media player with MediaPipe, VLC and OpenCV. Contents About Setup About A tool for using gestures

Atharva Joshi 2 Dec 22, 2021
A Simple Flask-Plotly Example for NTU 110-1 DSSI Class

A Simple Flask-Plotly Example for NTU 110-1 DSSI Class Live Demo Prerequisites We will use Flask and Ploty to build a Flask application. If you haven'

Ting Ni Wu 1 Dec 11, 2021
Jupyter Notebook extension leveraging pandas DataFrames by integrating DataTables and ChartJS.

Jupyter DataTables Jupyter Notebook extension to leverage pandas DataFrames by integrating DataTables JS. About Data scientists and in fact many devel

Marek ČermÑk 142 Dec 28, 2022
CLAHE Contrast Limited Adaptive Histogram Equalization

A simple code to process images using contrast limited adaptive histogram equalization. Image processing is becoming a major part of data processig.

Happy N. Monday 4 May 18, 2022
The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualizing NFT data from OpenSea, using PostgreSQL and TimescaleDB.

Timescale NFT Starter Kit The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualiz

Timescale 102 Dec 24, 2022
Automatization of BoxPlot graph usin Python MatPlotLib and Excel

BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat

EricAugustin 1 Feb 07, 2022
Visualizations of linear algebra algorithms for people who want a deep understanding

Visualising algorithms on symmetric matrices Examples QR algorithm and LR algorithm Here, we have a GIF animation of an interactive visualisation of t

ogogmad 3 May 05, 2022
Chem: collection of mostly python code for molecular visualization, QM/MM, FEP, etc

chem: collection of mostly python code for molecular visualization, QM/MM, FEP,

5 Sep 02, 2022
100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

100 pandas puzzles Puzzles notebook Solutions notebook Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of panda

Alex Riley 1.9k Jan 08, 2023