Python bindings and utilities for GeoJSON

Overview

geojson

GitHub Actions Codecov Jazzband

This Python library contains:

Table of Contents

Installation

geojson is compatible with Python 3.6 - 3.9. The recommended way to install is via pip:

pip install geojson

GeoJSON Objects

This library implements all the GeoJSON Objects described in The GeoJSON Format Specification.

All object keys can also be used as attributes.

The objects contained in GeometryCollection and FeatureCollection can be indexed directly.

Point

>>> from geojson import Point

>>> Point((-115.81, 37.24))  # doctest: +ELLIPSIS
{"coordinates": [-115.8..., 37.2...], "type": "Point"}

Visualize the result of the example above here. General information about Point can be found in Section 3.1.2 and Appendix A: Points within The GeoJSON Format Specification.

MultiPoint

>>> from geojson import MultiPoint

>>> MultiPoint([(-155.52, 19.61), (-156.22, 20.74), (-157.97, 21.46)])  # doctest: +ELLIPSIS
{"coordinates": [[-155.5..., 19.6...], [-156.2..., 20.7...], [-157.9..., 21.4...]], "type": "MultiPoint"}

Visualize the result of the example above here. General information about MultiPoint can be found in Section 3.1.3 and Appendix A: MultiPoints within The GeoJSON Format Specification.

LineString

>>> from geojson import LineString

>>> LineString([(8.919, 44.4074), (8.923, 44.4075)])  # doctest: +ELLIPSIS
{"coordinates": [[8.91..., 44.407...], [8.92..., 44.407...]], "type": "LineString"}

Visualize the result of the example above here. General information about LineString can be found in Section 3.1.4 and Appendix A: LineStrings within The GeoJSON Format Specification.

MultiLineString

>>> from geojson import MultiLineString

>>> MultiLineString([
...     [(3.75, 9.25), (-130.95, 1.52)],
...     [(23.15, -34.25), (-1.35, -4.65), (3.45, 77.95)]
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[3.7..., 9.2...], [-130.9..., 1.52...]], [[23.1..., -34.2...], [-1.3..., -4.6...], [3.4..., 77.9...]]], "type": "MultiLineString"}

Visualize the result of the example above here. General information about MultiLineString can be found in Section 3.1.5 and Appendix A: MultiLineStrings within The GeoJSON Format Specification.

Polygon

>>> from geojson import Polygon

>>> # no hole within polygon
>>> Polygon([[(2.38, 57.322), (23.194, -20.28), (-120.43, 19.15), (2.38, 57.322)]])  # doctest: +ELLIPSIS
{"coordinates": [[[2.3..., 57.32...], [23.19..., -20.2...], [-120.4..., 19.1...]]], "type": "Polygon"}

>>> # hole within polygon
>>> Polygon([
...     [(2.38, 57.322), (23.194, -20.28), (-120.43, 19.15), (2.38, 57.322)],
...     [(-5.21, 23.51), (15.21, -10.81), (-20.51, 1.51), (-5.21, 23.51)]
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[2.3..., 57.32...], [23.19..., -20.2...], [-120.4..., 19.1...]], [[-5.2..., 23.5...], [15.2..., -10.8...], [-20.5..., 1.5...], [-5.2..., 23.5...]]], "type": "Polygon"}

Visualize the results of the example above here. General information about Polygon can be found in Section 3.1.6 and Appendix A: Polygons within The GeoJSON Format Specification.

MultiPolygon

>>> from geojson import MultiPolygon

>>> MultiPolygon([
...     ([(3.78, 9.28), (-130.91, 1.52), (35.12, 72.234), (3.78, 9.28)],),
...     ([(23.18, -34.29), (-1.31, -4.61), (3.41, 77.91), (23.18, -34.29)],)
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[[3.7..., 9.2...], [-130.9..., 1.5...], [35.1..., 72.23...]]], [[[23.1..., -34.2...], [-1.3..., -4.6...], [3.4..., 77.9...]]]], "type": "MultiPolygon"}

Visualize the result of the example above here. General information about MultiPolygon can be found in Section 3.1.7 and Appendix A: MultiPolygons within The GeoJSON Format Specification.

GeometryCollection

>>> from geojson import GeometryCollection, Point, LineString

>>> my_point = Point((23.532, -63.12))

>>> my_line = LineString([(-152.62, 51.21), (5.21, 10.69)])

>>> geo_collection = GeometryCollection([my_point, my_line])

>>> geo_collection  # doctest: +ELLIPSIS
{"geometries": [{"coordinates": [23.53..., -63.1...], "type": "Point"}, {"coordinates": [[-152.6..., 51.2...], [5.2..., 10.6...]], "type": "LineString"}], "type": "GeometryCollection"}

>>> geo_collection[1]
{"coordinates": [[-152.62, 51.21], [5.21, 10.69]], "type": "LineString"}

>>> geo_collection[0] == geo_collection.geometries[0]
True

Visualize the result of the example above here. General information about GeometryCollection can be found in Section 3.1.8 and Appendix A: GeometryCollections within The GeoJSON Format Specification.

Feature

>>> from geojson import Feature, Point

>>> my_point = Point((-3.68, 40.41))

>>> Feature(geometry=my_point)  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "properties": {}, "type": "Feature"}

>>> Feature(geometry=my_point, properties={"country": "Spain"})  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "properties": {"country": "Spain"}, "type": "Feature"}

>>> Feature(geometry=my_point, id=27)  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "id": 27, "properties": {}, "type": "Feature"}

Visualize the results of the examples above here. General information about Feature can be found in Section 3.2 within The GeoJSON Format Specification.

FeatureCollection

>>> from geojson import Feature, Point, FeatureCollection

>>> my_feature = Feature(geometry=Point((1.6432, -19.123)))

>>> my_other_feature = Feature(geometry=Point((-80.234, -22.532)))

>>> feature_collection = FeatureCollection([my_feature, my_other_feature])

>>> feature_collection # doctest: +ELLIPSIS
{"features": [{"geometry": {"coordinates": [1.643..., -19.12...], "type": "Point"}, "properties": {}, "type": "Feature"}, {"geometry": {"coordinates": [-80.23..., -22.53...], "type": "Point"}, "properties": {}, "type": "Feature"}], "type": "FeatureCollection"}

>>> feature_collection.errors()
[]

>>> (feature_collection[0] == feature_collection['features'][0], feature_collection[1] == my_other_feature)
(True, True)

Visualize the result of the example above here. General information about FeatureCollection can be found in Section 3.3 within The GeoJSON Format Specification.

GeoJSON encoding/decoding

All of the GeoJSON Objects implemented in this library can be encoded and decoded into raw GeoJSON with the geojson.dump, geojson.dumps, geojson.load, and geojson.loads functions. Note that each of these functions is a wrapper around the core json function with the same name, and will pass through any additional arguments. This allows you to control the JSON formatting or parsing behavior with the underlying core json functions.

>>> import geojson

>>> my_point = geojson.Point((43.24, -1.532))

>>> my_point  # doctest: +ELLIPSIS
{"coordinates": [43.2..., -1.53...], "type": "Point"}

>>> dump = geojson.dumps(my_point, sort_keys=True)

>>> dump  # doctest: +ELLIPSIS
'{"coordinates": [43.2..., -1.53...], "type": "Point"}'

>>> geojson.loads(dump)  # doctest: +ELLIPSIS
{"coordinates": [43.2..., -1.53...], "type": "Point"}

Custom classes

This encoding/decoding functionality shown in the previous can be extended to custom classes using the interface described by the __geo_interface__ Specification.

>>> import geojson

>>> class MyPoint():
...     def __init__(self, x, y):
...         self.x = x
...         self.y = y
...
...     @property
...     def __geo_interface__(self):
...         return {'type': 'Point', 'coordinates': (self.x, self.y)}

>>> point_instance = MyPoint(52.235, -19.234)

>>> geojson.dumps(point_instance, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [52.23..., -19.23...], "type": "Point"}'

Default and custom precision

GeoJSON Object-based classes in this package have an additional precision attribute which rounds off coordinates to 6 decimal places (roughly 0.1 meters) by default and can be customized per object instance.

>>> from geojson import Point

>>> Point((-115.123412341234, 37.123412341234))  # rounded to 6 decimal places by default
{"coordinates": [-115.123412, 37.123412], "type": "Point"}

>>> Point((-115.12341234, 37.12341234), precision=8)  # rounded to 8 decimal places
{"coordinates": [-115.12341234, 37.12341234], "type": "Point"}

Helpful utilities

coords

geojson.utils.coords yields all coordinate tuples from a geometry or feature object.

>>> import geojson

>>> my_line = LineString([(-152.62, 51.21), (5.21, 10.69)])

>>> my_feature = geojson.Feature(geometry=my_line)

>>> list(geojson.utils.coords(my_feature))  # doctest: +ELLIPSIS
[(-152.62..., 51.21...), (5.21..., 10.69...)]

map_coords

geojson.utils.map_coords maps a function over all coordinate values and returns a geometry of the same type. Useful for scaling a geometry.

>>> import geojson

>>> new_point = geojson.utils.map_coords(lambda x: x/2, geojson.Point((-115.81, 37.24)))

>>> geojson.dumps(new_point, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [-57.905..., 18.62...], "type": "Point"}'

map_tuples

geojson.utils.map_tuples maps a function over all coordinates and returns a geometry of the same type. Useful for changing coordinate order or applying coordinate transforms.

>>> import geojson

>>> new_point = geojson.utils.map_tuples(lambda c: (c[1], c[0]), geojson.Point((-115.81, 37.24)))

>>> geojson.dumps(new_point, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [37.24..., -115.81], "type": "Point"}'

map_geometries

geojson.utils.map_geometries maps a function over each geometry in the input.

>>> import geojson

>>> new_point = geojson.utils.map_geometries(lambda g: geojson.MultiPoint([g["coordinates"]]), geojson.GeometryCollection([geojson.Point((-115.81, 37.24))]))

>>> geojson.dumps(new_point, sort_keys=True)
'{"geometries": [{"coordinates": [[-115.81, 37.24]], "type": "MultiPoint"}], "type": "GeometryCollection"}'

validation

is_valid property provides simple validation of GeoJSON objects.

>>> import geojson

>>> obj = geojson.Point((-3.68,40.41,25.14,10.34))
>>> obj.is_valid
False

errors method provides collection of errors when validation GeoJSON objects.

>>> import geojson

>>> obj = geojson.Point((-3.68,40.41,25.14,10.34))
>>> obj.errors()
'a position must have exactly 2 or 3 values'

generate_random

geojson.utils.generate_random yields a geometry type with random data

>>> import geojson

>>> geojson.utils.generate_random("LineString")  # doctest: +ELLIPSIS
{"coordinates": [...], "type": "LineString"}

>>> geojson.utils.generate_random("Polygon")  # doctest: +ELLIPSIS
{"coordinates": [...], "type": "Polygon"}

Development

To build this project, run python setup.py build. To run the unit tests, run python setup.py test. To run the style checks, run flake8 (install flake8 if needed).

Credits

Solving the Traveling Salesman Problem using Self-Organizing Maps

Solving the Traveling Salesman Problem using Self-Organizing Maps This repository contains an implementation of a Self Organizing Map that can be used

Diego Vicente 3.1k Dec 31, 2022
Raster-based Spatial Analysis for Python

🌍 xarray-spatial: Raster-Based Spatial Analysis in Python 📍 Fast, Accurate Python library for Raster Operations ⚡ Extensible with Numba ⏩ Scalable w

makepath 649 Jan 01, 2023
Use Mapbox GL JS to visualize data in a Python Jupyter notebook

Location Data Visualization library for Jupyter Notebooks Library documentation at https://mapbox-mapboxgl-jupyter.readthedocs-hosted.com/en/latest/.

Mapbox 620 Dec 15, 2022
Hapi is a Python library for building Conceptual Distributed Model using HBV96 lumped model & Muskingum routing method

Current build status All platforms: Current release info Name Downloads Version Platforms Hapi - Hydrological library for Python Hapi is an open-sourc

Mostafa Farrag 15 Dec 26, 2022
Get-countries-info - A python code that fetches data of any country

Country-info A python code getting countries information including country's map

CODE 2 Feb 21, 2022
Python project to generate Kerala's distrcit level panchayath map.

Kerala-Panchayath-Maps Python project to generate Kerala's distrcit level panchayath map. As of now, geojson files of Kollam and Kozhikode are added t

Athul R T 2 Jan 10, 2022
Rasterio reads and writes geospatial raster datasets

Rasterio Rasterio reads and writes geospatial raster data. Geographic information systems use GeoTIFF and other formats to organize and store gridded,

Mapbox 1.9k Jan 07, 2023
Pandas Network Analysis: fast accessibility metrics and shortest paths, using contraction hierarchies :world_map:

Pandana Pandana is a Python library for network analysis that uses contraction hierarchies to calculate super-fast travel accessibility metrics and sh

Urban Data Science Toolkit 321 Jan 05, 2023
A modern, geometric typeface by @chrismsimpson (last commit @ 85fa625 Jun 9, 2020 before deletion)

Metropolis A modern, geometric typeface. Influenced by other popular geometric, minimalist sans-serif typefaces of the new millenium. Designed for opt

Darius 183 Dec 25, 2022
Calculate & view the trajectory and live position of any earth-orbiting satellite

satellite-visualization A cross-platform application to calculate & view the trajectory and live position of any earth-orbiting satellite in 3D. This

Space Technology and Astronomy Cell - Open Source Society 3 Jan 08, 2022
geemap - A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.

A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and folium

Qiusheng Wu 2.4k Dec 30, 2022
Python library to visualize circular plasmid maps

Plasmidviewer Plasmidviewer is a Python library to visualize plasmid maps from GenBank. This library provides only the function to visualize circular

Mori Hideto 9 Dec 04, 2022
User friendly Rasterio plugin to read raster datasets.

rio-tiler User friendly Rasterio plugin to read raster datasets. Documentation: https://cogeotiff.github.io/rio-tiler/ Source Code: https://github.com

372 Dec 23, 2022
Python library to decrypt Airtag reports, as well as a InfluxDB/Grafana self-hosted dashboard example

Openhaystack-python This python daemon will allow you to gather your Openhaystack-based airtag reports and display them on a Grafana dashboard. You ca

Bezmenov Denys 19 Jan 03, 2023
Wraps GEOS geometry functions in numpy ufuncs.

PyGEOS PyGEOS is a C/Python library with vectorized geometry functions. The geometry operations are done in the open-source geometry library GEOS. PyG

362 Dec 23, 2022
Imports VZD (Latvian State Land Service) open data into postgis enabled database

Python script main.py downloads and imports Latvian addresses into PostgreSQL database. Data contains parishes, counties, cities, towns, and streets.

Kaspars Foigts 7 Oct 26, 2022
Client library for interfacing with USGS datasets

USGS API USGS is a python module for interfacing with the US Geological Survey's API. It provides submodules to interact with various endpoints, and c

Amit Kapadia 104 Dec 30, 2022
Replace MSFS2020's bing map to google map

English verison here 中文 免责声明 本教程提到的方法仅用于研究和学习用途。我不对使用、拓展该教程及方法所造成的任何法律责任和损失负责。 背景 微软模拟飞行2020的地景使用了Bing的卫星地图,然而卫星地图比较老旧,很多地区都是几年前的图设置直接是没有的。这种现象在全球不同地区

hesicong 272 Dec 24, 2022
Geospatial Image Processing for Python

GIPPY Gippy is a Python library for image processing of geospatial raster data. The core of the library is implemented as a C++ library, libgip, with

GIPIT 83 Aug 19, 2022
A service to auto provision devices in Aruba Central based on the Geo-IP location

Location Based Provisioning Service for Aruba Central A service to auto provision devices in Aruba Central based on the Geo-IP location Geo-IP auto pr

Will Smith 3 Mar 22, 2022