Python bindings and utilities for GeoJSON

Overview

geojson

GitHub Actions Codecov Jazzband

This Python library contains:

Table of Contents

Installation

geojson is compatible with Python 3.6 - 3.9. The recommended way to install is via pip:

pip install geojson

GeoJSON Objects

This library implements all the GeoJSON Objects described in The GeoJSON Format Specification.

All object keys can also be used as attributes.

The objects contained in GeometryCollection and FeatureCollection can be indexed directly.

Point

>>> from geojson import Point

>>> Point((-115.81, 37.24))  # doctest: +ELLIPSIS
{"coordinates": [-115.8..., 37.2...], "type": "Point"}

Visualize the result of the example above here. General information about Point can be found in Section 3.1.2 and Appendix A: Points within The GeoJSON Format Specification.

MultiPoint

>>> from geojson import MultiPoint

>>> MultiPoint([(-155.52, 19.61), (-156.22, 20.74), (-157.97, 21.46)])  # doctest: +ELLIPSIS
{"coordinates": [[-155.5..., 19.6...], [-156.2..., 20.7...], [-157.9..., 21.4...]], "type": "MultiPoint"}

Visualize the result of the example above here. General information about MultiPoint can be found in Section 3.1.3 and Appendix A: MultiPoints within The GeoJSON Format Specification.

LineString

>>> from geojson import LineString

>>> LineString([(8.919, 44.4074), (8.923, 44.4075)])  # doctest: +ELLIPSIS
{"coordinates": [[8.91..., 44.407...], [8.92..., 44.407...]], "type": "LineString"}

Visualize the result of the example above here. General information about LineString can be found in Section 3.1.4 and Appendix A: LineStrings within The GeoJSON Format Specification.

MultiLineString

>>> from geojson import MultiLineString

>>> MultiLineString([
...     [(3.75, 9.25), (-130.95, 1.52)],
...     [(23.15, -34.25), (-1.35, -4.65), (3.45, 77.95)]
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[3.7..., 9.2...], [-130.9..., 1.52...]], [[23.1..., -34.2...], [-1.3..., -4.6...], [3.4..., 77.9...]]], "type": "MultiLineString"}

Visualize the result of the example above here. General information about MultiLineString can be found in Section 3.1.5 and Appendix A: MultiLineStrings within The GeoJSON Format Specification.

Polygon

>>> from geojson import Polygon

>>> # no hole within polygon
>>> Polygon([[(2.38, 57.322), (23.194, -20.28), (-120.43, 19.15), (2.38, 57.322)]])  # doctest: +ELLIPSIS
{"coordinates": [[[2.3..., 57.32...], [23.19..., -20.2...], [-120.4..., 19.1...]]], "type": "Polygon"}

>>> # hole within polygon
>>> Polygon([
...     [(2.38, 57.322), (23.194, -20.28), (-120.43, 19.15), (2.38, 57.322)],
...     [(-5.21, 23.51), (15.21, -10.81), (-20.51, 1.51), (-5.21, 23.51)]
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[2.3..., 57.32...], [23.19..., -20.2...], [-120.4..., 19.1...]], [[-5.2..., 23.5...], [15.2..., -10.8...], [-20.5..., 1.5...], [-5.2..., 23.5...]]], "type": "Polygon"}

Visualize the results of the example above here. General information about Polygon can be found in Section 3.1.6 and Appendix A: Polygons within The GeoJSON Format Specification.

MultiPolygon

>>> from geojson import MultiPolygon

>>> MultiPolygon([
...     ([(3.78, 9.28), (-130.91, 1.52), (35.12, 72.234), (3.78, 9.28)],),
...     ([(23.18, -34.29), (-1.31, -4.61), (3.41, 77.91), (23.18, -34.29)],)
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[[3.7..., 9.2...], [-130.9..., 1.5...], [35.1..., 72.23...]]], [[[23.1..., -34.2...], [-1.3..., -4.6...], [3.4..., 77.9...]]]], "type": "MultiPolygon"}

Visualize the result of the example above here. General information about MultiPolygon can be found in Section 3.1.7 and Appendix A: MultiPolygons within The GeoJSON Format Specification.

GeometryCollection

>>> from geojson import GeometryCollection, Point, LineString

>>> my_point = Point((23.532, -63.12))

>>> my_line = LineString([(-152.62, 51.21), (5.21, 10.69)])

>>> geo_collection = GeometryCollection([my_point, my_line])

>>> geo_collection  # doctest: +ELLIPSIS
{"geometries": [{"coordinates": [23.53..., -63.1...], "type": "Point"}, {"coordinates": [[-152.6..., 51.2...], [5.2..., 10.6...]], "type": "LineString"}], "type": "GeometryCollection"}

>>> geo_collection[1]
{"coordinates": [[-152.62, 51.21], [5.21, 10.69]], "type": "LineString"}

>>> geo_collection[0] == geo_collection.geometries[0]
True

Visualize the result of the example above here. General information about GeometryCollection can be found in Section 3.1.8 and Appendix A: GeometryCollections within The GeoJSON Format Specification.

Feature

>>> from geojson import Feature, Point

>>> my_point = Point((-3.68, 40.41))

>>> Feature(geometry=my_point)  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "properties": {}, "type": "Feature"}

>>> Feature(geometry=my_point, properties={"country": "Spain"})  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "properties": {"country": "Spain"}, "type": "Feature"}

>>> Feature(geometry=my_point, id=27)  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "id": 27, "properties": {}, "type": "Feature"}

Visualize the results of the examples above here. General information about Feature can be found in Section 3.2 within The GeoJSON Format Specification.

FeatureCollection

>>> from geojson import Feature, Point, FeatureCollection

>>> my_feature = Feature(geometry=Point((1.6432, -19.123)))

>>> my_other_feature = Feature(geometry=Point((-80.234, -22.532)))

>>> feature_collection = FeatureCollection([my_feature, my_other_feature])

>>> feature_collection # doctest: +ELLIPSIS
{"features": [{"geometry": {"coordinates": [1.643..., -19.12...], "type": "Point"}, "properties": {}, "type": "Feature"}, {"geometry": {"coordinates": [-80.23..., -22.53...], "type": "Point"}, "properties": {}, "type": "Feature"}], "type": "FeatureCollection"}

>>> feature_collection.errors()
[]

>>> (feature_collection[0] == feature_collection['features'][0], feature_collection[1] == my_other_feature)
(True, True)

Visualize the result of the example above here. General information about FeatureCollection can be found in Section 3.3 within The GeoJSON Format Specification.

GeoJSON encoding/decoding

All of the GeoJSON Objects implemented in this library can be encoded and decoded into raw GeoJSON with the geojson.dump, geojson.dumps, geojson.load, and geojson.loads functions. Note that each of these functions is a wrapper around the core json function with the same name, and will pass through any additional arguments. This allows you to control the JSON formatting or parsing behavior with the underlying core json functions.

>>> import geojson

>>> my_point = geojson.Point((43.24, -1.532))

>>> my_point  # doctest: +ELLIPSIS
{"coordinates": [43.2..., -1.53...], "type": "Point"}

>>> dump = geojson.dumps(my_point, sort_keys=True)

>>> dump  # doctest: +ELLIPSIS
'{"coordinates": [43.2..., -1.53...], "type": "Point"}'

>>> geojson.loads(dump)  # doctest: +ELLIPSIS
{"coordinates": [43.2..., -1.53...], "type": "Point"}

Custom classes

This encoding/decoding functionality shown in the previous can be extended to custom classes using the interface described by the __geo_interface__ Specification.

>>> import geojson

>>> class MyPoint():
...     def __init__(self, x, y):
...         self.x = x
...         self.y = y
...
...     @property
...     def __geo_interface__(self):
...         return {'type': 'Point', 'coordinates': (self.x, self.y)}

>>> point_instance = MyPoint(52.235, -19.234)

>>> geojson.dumps(point_instance, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [52.23..., -19.23...], "type": "Point"}'

Default and custom precision

GeoJSON Object-based classes in this package have an additional precision attribute which rounds off coordinates to 6 decimal places (roughly 0.1 meters) by default and can be customized per object instance.

>>> from geojson import Point

>>> Point((-115.123412341234, 37.123412341234))  # rounded to 6 decimal places by default
{"coordinates": [-115.123412, 37.123412], "type": "Point"}

>>> Point((-115.12341234, 37.12341234), precision=8)  # rounded to 8 decimal places
{"coordinates": [-115.12341234, 37.12341234], "type": "Point"}

Helpful utilities

coords

geojson.utils.coords yields all coordinate tuples from a geometry or feature object.

>>> import geojson

>>> my_line = LineString([(-152.62, 51.21), (5.21, 10.69)])

>>> my_feature = geojson.Feature(geometry=my_line)

>>> list(geojson.utils.coords(my_feature))  # doctest: +ELLIPSIS
[(-152.62..., 51.21...), (5.21..., 10.69...)]

map_coords

geojson.utils.map_coords maps a function over all coordinate values and returns a geometry of the same type. Useful for scaling a geometry.

>>> import geojson

>>> new_point = geojson.utils.map_coords(lambda x: x/2, geojson.Point((-115.81, 37.24)))

>>> geojson.dumps(new_point, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [-57.905..., 18.62...], "type": "Point"}'

map_tuples

geojson.utils.map_tuples maps a function over all coordinates and returns a geometry of the same type. Useful for changing coordinate order or applying coordinate transforms.

>>> import geojson

>>> new_point = geojson.utils.map_tuples(lambda c: (c[1], c[0]), geojson.Point((-115.81, 37.24)))

>>> geojson.dumps(new_point, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [37.24..., -115.81], "type": "Point"}'

map_geometries

geojson.utils.map_geometries maps a function over each geometry in the input.

>>> import geojson

>>> new_point = geojson.utils.map_geometries(lambda g: geojson.MultiPoint([g["coordinates"]]), geojson.GeometryCollection([geojson.Point((-115.81, 37.24))]))

>>> geojson.dumps(new_point, sort_keys=True)
'{"geometries": [{"coordinates": [[-115.81, 37.24]], "type": "MultiPoint"}], "type": "GeometryCollection"}'

validation

is_valid property provides simple validation of GeoJSON objects.

>>> import geojson

>>> obj = geojson.Point((-3.68,40.41,25.14,10.34))
>>> obj.is_valid
False

errors method provides collection of errors when validation GeoJSON objects.

>>> import geojson

>>> obj = geojson.Point((-3.68,40.41,25.14,10.34))
>>> obj.errors()
'a position must have exactly 2 or 3 values'

generate_random

geojson.utils.generate_random yields a geometry type with random data

>>> import geojson

>>> geojson.utils.generate_random("LineString")  # doctest: +ELLIPSIS
{"coordinates": [...], "type": "LineString"}

>>> geojson.utils.generate_random("Polygon")  # doctest: +ELLIPSIS
{"coordinates": [...], "type": "Polygon"}

Development

To build this project, run python setup.py build. To run the unit tests, run python setup.py test. To run the style checks, run flake8 (install flake8 if needed).

Credits

Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent.

goes-latlon Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent. 🌎 🛰️ The grid files can be acces

Douglas Uba 3 Apr 06, 2022
PySAL: Python Spatial Analysis Library Meta-Package

Python Spatial Analysis Library PySAL, the Python spatial analysis library, is an open source cross-platform library for geospatial data science with

Python Spatial Analysis Library 1.1k Dec 18, 2022
WhiteboxTools Python Frontend

whitebox-python Important Note This repository is related to the WhiteboxTools Python Frontend only. You can report issues to this repo if you have pr

Qiusheng Wu 304 Dec 15, 2022
OSMnx: Python for street networks. Retrieve, model, analyze, and visualize street networks and other spatial data from OpenStreetMap.

OSMnx OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street

Geoff Boeing 4k Jan 08, 2023
Calculate the area inside of any GeoJSON geometry. This is a port of Mapbox's geojson-area for Python

geojson-area Calculate the area inside of any GeoJSON geometry. This is a port of Mapbox's geojson-area for Python. Installation $ pip install area U

Alireza 87 Dec 14, 2022
Bacon - Band-limited Coordinate Networks for Multiscale Scene Representation

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation Project Page | Video | Paper Official PyTorch implementation of BACON. BAC

Stanford Computational Imaging Lab 144 Dec 29, 2022
Interactive Maps with Geopandas

Create Interactive maps 🗺️ with your geodataframe Geopatra extends geopandas for interactive mapping and attempts to wrap the goodness of amazing map

sangarshanan 46 Aug 16, 2022
peartree: A library for converting transit data into a directed graph for sketch network analysis.

peartree 🍐 🌳 peartree is a library for converting GTFS feed schedules into a representative directed network graph. The tool uses Partridge to conve

Kuan Butts 183 Dec 29, 2022
Google Maps keeps old satellite imagery around for a while – this tool collects what's available for a user-specified region in the form of a GIF.

google-maps-at-88-mph The folks maintaining Google Maps regularly update the satellite imagery it serves its users, but outdated versions of the image

Noah Doersing 111 Sep 27, 2022
A python package that extends Google Earth Engine.

A python package that extends Google Earth Engine GitHub: https://github.com/davemlz/eemont Documentation: https://eemont.readthedocs.io/ PyPI: https:

David Montero Loaiza 307 Jan 01, 2023
Stitch image tiles into larger composite TIFs

untiler Utility to take a directory of {z}/{x}/{y}.(jpg|png) tiles, and stitch into a scenetiff (tif w/ exact merc tile bounds). Future versions will

Mapbox 38 Dec 16, 2022
ArcGIS Python Toolbox for WhiteboxTools

WhiteboxTools-ArcGIS ArcGIS Python Toolbox for WhiteboxTools. This repository is related to the ArcGIS Python Toolbox for WhiteboxTools, which is an A

Qiusheng Wu 190 Dec 30, 2022
Evaluation of file formats in the context of geo-referenced 3D geometries.

Geo-referenced Geometry File Formats Classic geometry file formats as .obj, .off, .ply, .stl or .dae do not support the utilization of coordinate syst

Advanced Information Systems and Technology 11 Mar 02, 2022
prettymaps - A minimal Python library to draw customized maps from OpenStreetMap data.

A small set of Python functions to draw pretty maps from OpenStreetMap data. Based on osmnx, matplotlib and shapely libraries.

Marcelo de Oliveira Rosa Prates 9k Jan 08, 2023
Spatial Interpolation Toolbox is a Python-based GUI that is able to interpolate spatial data in vector format.

Spatial Interpolation Toolbox This is the home to Spatial Interpolation Toolbox, a graphical user interface (GUI) for interpolating geographic vector

Michael Ward 2 Nov 01, 2021
Specification for storing geospatial vector data (point, line, polygon) in Parquet

GeoParquet About This repository defines how to store geospatial vector data (point, lines, polygons) in Apache Parquet, a popular columnar storage fo

Open Geospatial Consortium 449 Dec 27, 2022
A set of utility functions for working with GeoJSON annotations in Kaibu

kaibu-utils A set of utility functions for working with Kaibu. Create a new repository Create a new repository and select imjoy-team/imjoy-python-temp

ImJoy Team 0 Dec 12, 2021
r.cfdtools 7 Dec 28, 2022
Deal with Bing Maps Tiles and Pixels / WGS 84 coordinates conversions, and generate grid Shapefiles

PyBingTiles This is a small toolkit in order to deal with Bing Tiles, used i.e. by Facebook for their Data for Good datasets. Install Clone this repos

Shoichi 1 Dec 08, 2021
pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef enu eci

Python 3-D coordinate conversions Pure Python (no prerequistes beyond Python itself) 3-D geographic coordinate conversions and geodesy. API similar to

Geospace code 292 Dec 29, 2022