Bacon - Band-limited Coordinate Networks for Multiscale Scene Representation

Related tags

Geolocationbacon
Overview

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation

Project Page | Video | Paper

Official PyTorch implementation of BACON.
BACON: Band-limited Coordinate Networks for Multiscale Scene Representation
David B. Lindell*, Dave Van Veen, Jeong Joon Park, Gordon Wetzstein
Stanford University

Quickstart

To setup a conda environment use these commands

conda env create -f environment.yml
conda activate bacon

# download all datasets
python download_datasets.py

Now you can train networks to fit a 1D function, images, signed distance fields, or neural radiance fields with the following commands.

cd experiments
python train_1d.py --config ./config/1d/bacon_freq1.ini  # train 1D function
python train_img.py --config ./config/img/bacon.ini  # train image
python train_sdf.py --config ./config/sdf/bacon_armadillo.ini  # train SDF
python train_radiance_field.py --config ./config/nerf/bacon_lr.ini  # train NeRF

To visualize outputs in Tensorboard, run the following.

tensorboard --logdir=../logs --port=6006

Band-limited Coordinate Networks

Band-limited coordinate networks have an analytical Fourier spectrum and interpretible behavior. We demonstrate using these networks for fitting simple 1D signals, images, 3D shapes via signed distance functions and neural radiance fields.

Datasets

Datasets can be downloaded using the download_datasets.py script. This script

Training

We provide scripts for training and configuration files to reproduce the results in the paper.

1D Examples

To run the 1D examples, use the experiments/train_1d.py script with any of the config files in experiments/config/1d. These scripts allow training models with BACON, Fourier Features, or SIREN. For example, to train a BACON model you can run

python train_1d.py --config ./config/1d/bacon_freq1.ini

To change the bandwidth of BACON, adjust the maximum frequency with the --max_freq flag. This sets network-equivalent sampling rate used to represent the signal. For example, if the signal you wish to represent has a maximum frequency of 5 cycles per unit interval, this value should be set to at least the Nyquist rate of 2 samples per cycle or 10 samples per unit interval. By default, the frequencies represented by BACON are quantized to intervals of 2*pi; thus, the network is periodic over an interval from -0.5 to 0.5. That is, the output of the network will repeat for input coordinates that exceed an absolute value of 0.5.

Image Fitting

Image fitting can be performed using the config files in experiments/config/img and the train_img.py script. We support training BACON, Fourier Features, SIREN, and networks with the positional encoding from Mip-NeRF.

SDF Fitting

Config files for SDF fitting are in experiments/config/sdf and can be used with the train_sdf.py script. Be sure to download the example datasets before running this script.

We also provide a rendering script to extract meshes from the trained models. The render_sdf.py program extracts a mesh using marching cubes and, optionally, our proposed multiscale adaptive SDF evaluation procedure.

NeRF Reconstruction

Use the config files in experiments/config/nerf with the train_radiance_field.py script to train neural radiance fields. Note that training the full resolution model can takes a while (a few days) so it may be easier to train a low-resolution model to get started. We provide a low-resolution config file in experiments/config/nerf/bacon_lr.ini.

To render output images from a trained model, use the render_nerf.py script. Note that the Blender synthetic datasets should be downloaded and the multiscale dataset generated before running this script.

Initialization Scheme

Finally, we also show a visualization of our initialization scheme in experiments/plot_activation_distributions.py. As shown in the paper, our initialization scheme prevents the distribution of activations from becoming vanishingly small, even for deep networks.

Pretrained models

For convenience, we include pretrained models for the SDF fitting and NeRF reconstruction tasks in the pretrained_models directory. The outputs of these models can be rendered directly using the experiments/render_sdf.py and experiments/render_nerf.py scripts.

Citation

@article{lindell2021bacon,
author = {Lindell, David B. and Van Veen, Dave and Park, Jeong Joon and Wetzstein, Gordon},
title = {BACON: Band-limited coordinate networks for multiscale scene representation},
journal = {arXiv preprint arXiv:2112.04645},
year={2021}
}

Acknowledgments

This project was supported in part by a PECASE by the ARO and NSF award 1839974.

Owner
Stanford Computational Imaging Lab
Next-generation computational imaging and display systems.
Stanford Computational Imaging Lab
Color correction plugin for rasterio

rio-color A rasterio plugin for applying basic color-oriented image operations to geospatial rasters. Goals No heavy dependencies: rio-color is purpos

Mapbox 111 Nov 15, 2022
WhiteboxTools Python Frontend

whitebox-python Important Note This repository is related to the WhiteboxTools Python Frontend only. You can report issues to this repo if you have pr

Qiusheng Wu 304 Dec 15, 2022
Wraps GEOS geometry functions in numpy ufuncs.

PyGEOS PyGEOS is a C/Python library with vectorized geometry functions. The geometry operations are done in the open-source geometry library GEOS. PyG

362 Dec 23, 2022
Obtain a GNSS position fix from an 11-millisecond raw GNSS signal snapshot

Obtain a GNSS position fix from an 11-millisecond raw GNSS signal snapshot without any prior knowledge about the position of the receiver and only coarse knowledge about the time.

Jonas Beuchert 2 Nov 17, 2022
Raster-based Spatial Analysis for Python

🌍 xarray-spatial: Raster-Based Spatial Analysis in Python πŸ“ Fast, Accurate Python library for Raster Operations ⚑ Extensible with Numba ⏩ Scalable w

makepath 649 Jan 01, 2023
Script that allows to download data with satellite's orbit height and create CSV with their change in time.

Satellite orbit height β—Ύ Requirements Python = 3.8 Packages listen in reuirements.txt (run pip install -r requirements.txt) Account on Space Track β—Ύ

Alicja MusiaΕ‚ 2 Jan 17, 2022
Imperial Valley Geomorphology Map

Roughly maps the extent of basins, basin edges, and mountains in the Imperial Valley by grouping terrain classes from the Iwahashi et al. 2021 California terrian classification model.

0 Dec 13, 2022
Python library to visualize circular plasmid maps

Plasmidviewer Plasmidviewer is a Python library to visualize plasmid maps from GenBank. This library provides only the function to visualize circular

Mori Hideto 9 Dec 04, 2022
Geospatial Image Processing for Python

GIPPY Gippy is a Python library for image processing of geospatial raster data. The core of the library is implemented as a C++ library, libgip, with

GIPIT 83 Aug 19, 2022
ESMAC diags - Earth System Model Aerosol-Cloud Diagnostics Package

Earth System Model Aerosol-Cloud Diagnostics Package This Earth System Model (ES

Pacific Northwest National Laboratory 1 Jan 04, 2022
Expose a GDAL file as a HTTP accessible on-the-fly COG

cogserver Expose any GDAL recognized raster file as a HTTP accessible on-the-fly COG (Cloud Optimized GeoTIFF) The on-the-fly COG file is not material

Even Rouault 73 Aug 04, 2022
Read images to numpy arrays

mahotas-imread: Read Image Files IO with images and numpy arrays. Mahotas-imread is a simple module with a small number of functions: imread Reads an

Luis Pedro Coelho 67 Jan 07, 2023
Google Maps keeps old satellite imagery around for a while – this tool collects what's available for a user-specified region in the form of a GIF.

google-maps-at-88-mph The folks maintaining Google Maps regularly update the satellite imagery it serves its users, but outdated versions of the image

Noah Doersing 111 Sep 27, 2022
Pure python WMS

Ogcserver Python WMS implementation using Mapnik. Depends Mapnik = 0.7.0 (and python bindings) Pillow PasteScript WebOb You will need to install Map

Mapnik 130 Dec 28, 2022
peartree: A library for converting transit data into a directed graph for sketch network analysis.

peartree 🍐 🌳 peartree is a library for converting GTFS feed schedules into a representative directed network graph. The tool uses Partridge to conve

Kuan Butts 183 Dec 29, 2022
A service to auto provision devices in Aruba Central based on the Geo-IP location

Location Based Provisioning Service for Aruba Central A service to auto provision devices in Aruba Central based on the Geo-IP location Geo-IP auto pr

Will Smith 3 Mar 22, 2022
Tile Map Service and OGC Tiles API for QGIS Server

Tiles API Add tiles API to QGIS Server Tiles Map Service API OGC Tiles API Tile Map Service API - TMS The TMS API provides these URLs: /tms/? to get i

3Liz 6 Dec 01, 2021
Geocode rows in a SQLite database table

Geocode rows in a SQLite database table

Chris Amico 225 Dec 08, 2022
A python package that extends Google Earth Engine.

A python package that extends Google Earth Engine GitHub: https://github.com/davemlz/eemont Documentation: https://eemont.readthedocs.io/ PyPI: https:

David Montero Loaiza 307 Jan 01, 2023
GebPy is a Python-based, open source tool for the generation of geological data of minerals, rocks and complete lithological sequences.

GebPy is a Python-based, open source tool for the generation of geological data of minerals, rocks and complete lithological sequences. The data can be generated randomly or with respect to user-defi

Maximilian Beeskow 16 Nov 29, 2022