Glyph-graph - A simple, yet versatile, package for graphing equations on a 2-dimensional text canvas

Overview

Glyth Graph

Revision for 0.01

A simple, yet versatile, package for graphing equations on a 2-dimensional text canvas

List of contents:

  1. Brief Introduction
  2. Process Overview
  3. Technical Overview
  4. Function Glossary
  5. Code Example
  6. Legal (MIT license)

Brief Introduction


Glyth Graph is an open-source python package, for graphing equations onto a 2-dimensional array (named the canvas) with a variety of arguments to draw within a specific range and bound. Scaling to the width and height of the canvas in proportion

.

Process Overview


glyth_graph_basic():

Upon attaching the constructor to an object a 2D array with the declared resolution size will be filled with the chosen blank_glyth, named the canvas.

draw_graph():

  1. Check whether the given char_x (x-axis position of the canvas) is within the bounds of the canvas width as stated in the resolution.
  2. If not formatted the equation will be simplified into an expression without 'y', '=' and any spaces.
  3. If not given the y-axis bounds for the equation within the x-axis range will be calculated by repetedly incrementing the x variable.
  4. Then an x variable will be calculated by mapping the char_x from the width to the x-axis range of the equation, equally distributing each increment of char_x in the x-axis.
  5. The x variable will be substitued into the equation to form a y-axis value, which will be mapped from the y-axis bounds of the equation to the canvas height.
  6. Finally, the 2D coordinate of the char_x and char_y value on the canvas will be replaced by the chosen glyth.

Technical Overview


The package operates on mapping values between the x and f(x) from the graph equation to the given resolution of the canvas, translating coordinates with a non-uniform scaling factor to draw a glyth by a 2D index.


Notation form of the equation for mapping charx to x


x-axis Value Equation


where rangefrom and rangeto are respectively the given x-axis region of the equation to draw.



Notation form of the equation for mapping f(x), equal to y, to chary


y-axis Canvas Index Equation


where max and min are respectively the calculated (or given) maximum and minimum y-axis values for the equation within the x-axis region.

Function Glossary


graph_basic(resolution: str, blank_glyth: str = None) -> None

The constructor of the class to create an attached object, setup the canvas array with the arguements given, both the size and blank (background) glyth

 - resolution: the width by the height of the canvas measured in character glyths | 'x'.join([width, height])
 - blank_glyth: the background glyth used for spacing the graph

format_equation(equation: str) -> str

Format the graph equation such that all unecessary characters are removed to be processed, this includes removal of 'y' and '=' if given an equation to form an expression and all ' ' (spaces) present

- equation: the mathematical equation of the graph going to be drawn

y_bounds(self, equation: str, x_range: tuple) -> tuple

Calculate the upper and lower bounds in the y-axis of a graph equation between the given x-axis range, to be used later for mapping positions

- equation: the mathematical equation of the graph going to be drawn
- x_range: a tuple of the x-axis range between which the graph will be used, all outside this is unnecessary

draw_graph(char_x: int, equation: str, glyth: str, x_range: tuple, y_bounds: tuple = None) -> list:

Draw a glyth onto the canvas array dependent on given arguments in relation to the graph equation, including the x-axis range and y-axis bounds of the 2-dimensional section of the graph and character position along the canvas

- char_x: the x_axis glyth position of the canvas, such that it starts to the leftmost position (0) to the rightmost (canvas width - 1) | 0 <= char_x < canvas width
- equation: the mathematical equation of the graph going to be drawn
- glyth: the character/s to be drawn onto the canvas at the calculated coordinate relative to the graph equation
- x_range: a tuple of the x-axis range between which the graph will be used, all outside this is unnecessary | (range_from, range_to)
- y_bounds: a tuple of the y-axis bounds for the x-axis region of the graph, including both the minimum and maximum values | (min, max)

clear_canvas() -> None:

Clear the canvas by replacing all indicies in the array with the blank glyth assigned in the constructor, removing any graphs drawn

print_canvas(clear: bool = None) -> None:

Pretty print the canvas array into equal rows of the set width with newline character moving to the next row, as each index is printed incrementally

- clear: a boolean value (either True or False) whether to clear the each canvas array index after printing the index | True or False

Code Example


A simple code example showing the usage of all functions in the package, with the user inputting variables to produce the wanted graph/s onto the canvas array as random Base64 character glyths:

from glyth_graph import graph_basic
from random import choice

character_set = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/'

print('---Glyth Graph---')

print('\n---Resolution---')
width = int(input('Width (chars): '))
height = int(input('Height (chars): '))

glyth_graph = graph_basic(
    resolution = 'x'.join([str(width), str(height)]),
    blank_glyth = '  '
)

while True:
    print('\n---Graph Properties---')
    equation = glyth_graph.format_equation(input('Equation: '))
    range_from, range_to = int(input('x-axis From: ')), int(input('x-axis To: '))
    print()

    bounds = glyth_graph.y_bounds(
        equation = equation,
        x_range = (range_from, range_to)
    )

    for char_x in range(0, width):
        glyth_graph.draw_graph(
            char_x = char_x,
            equation = equation,
            glyth = choice(character_set),
            x_range = (range_from, range_to),
            y_bounds = bounds
        )

    glyth_graph.print_canvas()


An example of an output to the program, which can vary with custom values for all given inputs, pretty printing the canvas array:

---Glyth Graph---

---Resolution---
Width (chars): 100
Height (chars): 30

Width: 100 | Height: 30

---Graph Properties---
Equation: y = math.sin(x)
x-axis From: 0
x-axis To: 6.283185

                     LbvwLB+K
                  Rp8        49D
                MB              FgW
              Kt                   O
            i6                      +w
           t                          f
          z                            LZ
        k7                               q
       9                                  q
      Y                                    G
     3                                      yP
    r                                         c
   9                                           h
  C                                             4
 f                                               K
l                                                 M                                               oe
                                                   o                                             7
                                                    y                                           n
                                                     O                                         e
                                                      tf                                      0
                                                        M                                    u
                                                         r                                  O
                                                          I                               lv
                                                           o8                            w
                                                             L                          A
                                                              Q2                      uO
                                                                w                   LD
                                                                 zvu              8x
                                                                    nGl        xMw
                                                                       XsohPTDx


License (MIT)



Permissions Conditions Limitations
Commercial use License and copyright notice Liability
Distribution Warranty
Modification
Private use
MIT License

Copyright (c) 2021 Ivan (GitHub: ivanl-exe, E-Mail: [email protected])

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Owner
Ivan
Advanced programmer, envisioning the future of technology and influence from Web3 and blockchains.
Ivan
python app to turn a photograph into a cartoon

Draw This. Draw This is a polaroid camera that draws cartoons. You point, and shoot - and out pops a cartoon; the camera's best interpretation of what

Dan Macnish 2k Dec 19, 2022
This Web App lets you convert your Normal Image to a SKETCHED one within a minute

This Web App lets you convert your Normal Image to a SKETCHED one within a minute

Avinash M 25 Nov 10, 2022
Anaglyph 3D Converter - A python script that adds a 3D anaglyph style effect to an image using the Pillow image processing package.

Anaglyph 3D Converter - A python script that adds a 3D anaglyph style effect to an image using the Pillow image processing package.

Kizdude 2 Jan 22, 2022
Detecting haze image with hazer.

hazer-py Detecting haze image with hazer. What is hazer Hazer is a lib for getting "haze degree". This repository is python version of hazer: https://

Joey777210 2 Dec 27, 2021
ImageStrike是一款用于CTF中图片隐写的综合利用工具

🎈 简介 ImageStrike是一款使用PyQT5开发,用于CTF中图片隐写的综合利用工具

zR00t1 133 Dec 27, 2022
Convert any image into greyscale ASCII art.

Image-to-ASCII Convert any image into greyscale ASCII art.

Ben Smith 12 Jan 15, 2022
📷 Python package and CLI utility to create photo mosaics.

📷 Python package and CLI utility to create photo mosaics.

Loic Coyle 7 Oct 29, 2022
An esoteric visual language that takes image files as input based on a multi-tape turing machine, designed for compatibility with C.

vizh An esoteric visual language that takes image files as input based on a multi-tape turing machine, designed for compatibility with C. Overview Her

Sy Brand 228 Dec 17, 2022
Seeks to remove text from an image in a convincing way.

Text-Removal This is a Computer Vision project that seeks to successfully remove text from an image by covering the text areas in a convincing way. He

6 Nov 22, 2022
Depix is a tool for recovering passwords from pixelized screenshots.

This implementation works on pixelized images that were created with a linear box filter. In this article I cover background information on pixelization and similar research.

23.1k Jan 04, 2023
Rotates your images in the spirit of rot13

Image Rotator (imrot10) Its like rot13 but for images. Calling the algorithm imrot10 for im = image, rot = rotation, 10 = default magnitude. Unfortuna

Sarah 2 Dec 10, 2021
image-processing exercises.

image_processing Assignment 21 Checkered Board Create a chess table using numpy and opencv. view: Color Correction Reverse black and white colors with

Benyamin Zojaji 25 Dec 15, 2022
Wand is a ctypes-based simple ImageMagick binding for Python

Wand Wand is a ctypes-based simple ImageMagick binding for Python, supporting 2.7, 3.3+, and PyPy. All functionalities of MagickWand API are implement

Eric McConville 1.2k Jan 03, 2023
Tool made for the FWA Yearbook Team to resize multiple images quickly.

ImageResize Tool Tool made for the FWA Yearbook Team to resize multiple images quickly. Make sure to check this repo for future updates How to Use The

LGobin 1 Jan 07, 2022
Art directed cropping, useful for responsive images

Art direction sets a focal point and can be used when you need multiple copies of the same Image but also in in different proportions.

Daniel 1 Aug 16, 2022
Archive of the image generator stuff from my API

alex_api_archive Archive of the image generator stuff from my API FAQ Q: Why? A: Because I am removing these components from the API Q: How do I run i

AlexFlipnote 26 Nov 17, 2022
An ascii art generator that's actually good. Does edge detection and selects the most appropriate characters.

Ascii Artist An ascii art generator that's actually good. Does edge detection and selects the most appropriate characters. Installing Installing with

18 Jan 03, 2023
An example which streams RGB-D images over spout.

Spout RGB-D Example An example which streams RGB-D images over spout with visiongraph. Due to the spout dependency this currently only works on Window

Florian Bruggisser 4 Nov 14, 2022
A GUI-based (PyQt5) tool used to design 2D linkage mechanism.

Pyslvs-UI A GUI-based (PyQt5) tool used to design 2D linkage mechanism. Planar Linkages Simulation Python-Solvespace: Kernel from Solvespace with Cyth

Yuan Chang 141 Dec 13, 2022
Computational Xmas Tree lights!

Computational Xmas Tree This repo contains the code for the computational illumination of a Christmas Tree! It is based on the work by Matt Parker fro

GSD6338 146 Dec 23, 2022