Full text search for flask.

Overview

flask-msearch

https://img.shields.io/badge/pypi-v0.2.9-brightgreen.svg https://img.shields.io/badge/python-2/3-brightgreen.svg https://img.shields.io/badge/license-BSD-blue.svg

Installation

To install flask-msearch:

pip install flask-msearch
# when MSEARCH_BACKEND = "whoosh"
pip install whoosh blinker
# when MSEARCH_BACKEND = "elasticsearch", only for 6.x.x
pip install elasticsearch==6.3.1

Or alternatively, you can download the repository and install manually by doing:

git clone https://github.com/honmaple/flask-msearch
cd flask-msearch
python setup.py install

Quickstart

from flask_msearch import Search
[...]
search = Search()
search.init_app(app)

# models.py
class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content']

# views.py
@app.route("/search")
def w_search():
    keyword = request.args.get('keyword')
    results = Post.query.msearch(keyword,fields=['title'],limit=20).filter(...)
    # or
    results = Post.query.filter(...).msearch(keyword,fields=['title'],limit=20).filter(...)
    # elasticsearch
    keyword = "title:book AND content:read"
    # more syntax please visit https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
    results = Post.query.msearch(keyword,limit=20).filter(...)
    return ''

Config

# when backend is elasticsearch, MSEARCH_INDEX_NAME is unused
# flask-msearch will use table name as elasticsearch index name unless set __msearch_index__
MSEARCH_INDEX_NAME = 'msearch'
# simple,whoosh,elaticsearch, default is simple
MSEARCH_BACKEND = 'whoosh'
# table's primary key if you don't like to use id, or set __msearch_primary_key__ for special model
MSEARCH_PRIMARY_KEY = 'id'
# auto create or update index
MSEARCH_ENABLE = True
# logger level, default is logging.WARNING
MSEARCH_LOGGER = logging.DEBUG
# SQLALCHEMY_TRACK_MODIFICATIONS must be set to True when msearch auto index is enabled
SQLALCHEMY_TRACK_MODIFICATIONS = True
# when backend is elasticsearch
ELASTICSEARCH = {"hosts": ["127.0.0.1:9200"]}

Usage

from flask_msearch import Search
[...]
search = Search()
search.init_app(app)

class Post(db.Model):
    __tablename__ = 'basic_posts'
    __searchable__ = ['title', 'content']

    id = db.Column(db.Integer, primary_key=True)
    title = db.Column(db.String(49))
    content = db.Column(db.Text)

    def __repr__(self):
        return '<Post:{}>'.format(self.title)

if raise sqlalchemy ValueError,please pass db param to Search

db = SQLalchemy()
search = Search(db=db)

Create_index

search.create_index()
search.create_index(Post)

Update_index

search.update_index()
search.update_index(Post)
# or
search.create_index(update=True)
search.create_index(Post, update=True)

Delete_index

search.delete_index()
search.delete_index(Post)
# or
search.create_index(delete=True)
search.create_index(Post, delete=True)

Custom Analyzer

only for whoosh backend

from jieba.analyse import ChineseAnalyzer
search = Search(analyzer=ChineseAnalyzer())

or use __msearch_analyzer__ for special model

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_analyzer__ = ChineseAnalyzer()

Custom index name

If you want to set special index name for some model.

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_index__ = "post111"

Custom schema

from whoosh.fields import ID

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']
    __msearch_schema__ = {'title': ID(stored=True, unique=True), 'content': 'text'}

Note: if you use hybrid_property, default field type is Text unless set special __msearch_schema__

Custom parser

from whoosh.qparser import MultifieldParser

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content']

    def _parser(fieldnames, schema, group, **kwargs):
        return MultifieldParser(fieldnames, schema, group=group, **kwargs)

    __msearch_parser__ = _parser

Note: Only for MSEARCH_BACKEND is whoosh

Custom index signal

flask-msearch uses flask signal to update index by default, if you want to use other asynchronous tools such as celey to update index, please set special MSEARCH_INDEX_SIGNAL

# app.py
app.config["MSEARCH_INDEX_SIGNAL"] = celery_signal
# or use string as variable
app.config["MSEARCH_INDEX_SIGNAL"] = "modulename.tasks.celery_signal"
search = Search(app)

# tasks.py
from flask_msearch.signal import default_signal

@celery.task(bind=True)
def celery_signal_task(self, backend, sender, changes):
    default_signal(backend, sender, changes)
    return str(self.request.id)

def celery_signal(backend, sender, changes):
    return celery_signal_task.delay(backend, sender, changes)

Relate index(Experimental)

for example

class Tag(db.Model):
    __tablename__ = 'tag'

    id = db.Column(db.Integer, primary_key=True)
    name = db.Column(db.String(49))

class Post(db.Model):
    __tablename__ = 'post'
    __searchable__ = ['title', 'content', 'tag.name']

    id = db.Column(db.Integer, primary_key=True)
    title = db.Column(db.String(49))
    content = db.Column(db.Text)

    # one to one
    tag_id = db.Column(db.Integer, db.ForeignKey('tag.id'))
    tag = db.relationship(
        Tag, backref=db.backref(
            'post', uselist=False), uselist=False)

    def __repr__(self):
        return '<Post:{}>'.format(self.title)

You must add msearch_FUN to Tag model,or the tag.name can’t auto update.

class Tag....
  ......
  def msearch_post_tag(self, delete=False):
      from sqlalchemy import text
      sql = text('select id from post where tag_id=' + str(self.id))
      return {
          'attrs': [{
              'id': str(i[0]),
              'tag.name': self.name
          } for i in db.engine.execute(sql)],
          '_index': Post
      }
Owner
honmaple
风落花语风落天,花落风雨花落田.
honmaple
Home for Elasticsearch examples available to everyone. It's a great way to get started.

Introduction This is a collection of examples to help you get familiar with the Elastic Stack. Each example folder includes a README with detailed ins

elastic 2.5k Jan 03, 2023
Yet another googlesearch - A Python library for executing intelligent, realistic-looking, and tunable Google searches.

yagooglesearch - Yet another googlesearch Overview yagooglesearch is a Python library for executing intelligent, realistic-looking, and tunable Google

115 Dec 29, 2022
A play store search application programming interface ( API )

Play-Store-API A play store search application programming interface ( API ) Made with Python3

Fayas Noushad 8 Oct 21, 2022
User-friendly, tiny source code searcher written by pure Python.

User-friendly, tiny source code searcher written in pure Python. Example Usages Cat is equivalent in the regular expression as '^Cat$' bor class Cat

Furkan Onder 106 Nov 02, 2022
ForFinder is a search tool for folder and files

ForFinder is a search tool for folder and files. You can use that when you Source Code Analysis at your project's local files or other projects that you are download. Enter a root path and keyword to

Çağrı Aliş 7 Oct 25, 2022
Full text search for flask.

flask-msearch Installation To install flask-msearch: pip install flask-msearch # when MSEARCH_BACKEND = "whoosh" pip install whoosh blinker # when MSE

honmaple 197 Dec 29, 2022
Google Search Engine Results Pages (SERP) in locally, no API key, no signup required

Local SERP Google Search Engine Results Pages (SERP) in locally, no API key, no signup required Make sure the chromedriver and required package are in

theblackcat102 4 Jun 29, 2021
solrpy is a Python client for Solr

solrpy solrpy is a Python client for Solr, an enterprise search server built on top of Lucene. solrpy allows you to add documents to a Solr instance,

Jiho Persy Lee 37 Jul 22, 2021
An image inline search telegram bot.

Image-Search-Bot An image inline search telegram bot. Note: Use Telegram picture bot. That is better. Not recommending to deploy this bot. Made with P

Fayas Noushad 24 Oct 21, 2022
Free and Open, Distributed, RESTful Search Engine

Elasticsearch Elasticsearch is the distributed, RESTful search and analytics engine at the heart of the Elastic Stack. You can use Elasticsearch to st

elastic 62.4k Jan 08, 2023
Image search service based on imgsmlr extension of PostgreSQL. Support image search by image.

imgsmlr-server Image search service based on imgsmlr extension of PostgreSQL. Support image search by image. This is a sample application of imgsmlr.

jie 45 Dec 12, 2022
A fast, efficiency python package for searching and getting search results with many different search engines

search A fast, efficiency python package for searching and getting search results with many different search engines. Installation To install the pack

Neurs 0 Oct 06, 2022
Wagtail CLIP allows you to search your Wagtail images using natural language queries.

Wagtail CLIP allows you to search your Wagtail images using natural language queries.

Matt Segal 10 Dec 21, 2022
Modular search for Django

Haystack Author: Daniel Lindsley Date: 2013/07/28 Haystack provides modular search for Django. It features a unified, familiar API that allows you to

Haystack Search 3.4k Jan 04, 2023
A library for fast import of Windows NT Registry(REGF) into Elasticsearch.

A library for fast import of Windows NT Registry(REGF) into Elasticsearch.

S.Nakano 3 Apr 01, 2022
Simple algorithm search engine like google in python using function

Mini-Search-Engine-Like-Google I have created the simple algorithm search engine like google in python using function. I am matching every word with w

Sachin Vinayak Dabhade 5 Sep 24, 2021
A search engine to query social media insights with political theme

social-insights Social insights is an open source big data project that generates insights about various interesting topics happening every day. Curre

UMass GDSC 10 Feb 28, 2022
Pythonic search engine based on PyLucene.

Lupyne is a search engine based on PyLucene, the Python extension for accessing Java Lucene. Lucene is a relatively low-level toolkit, and PyLucene wr

A. Coady 83 Jan 02, 2023
ElasticSearch ODM (Object Document Mapper) for Python - pip install esengine

esengine - The Elasticsearch Object Document Mapper esengine is an ODM (Object Document Mapper) it maps Python classes in to Elasticsearch index/doc_t

SEEK International AI 109 Nov 22, 2022
Whoosh indexing capabilities for Flask-SQLAlchemy, Python 3 compatibility fork.

Flask-WhooshAlchemy3 Whoosh indexing capabilities for Flask-SQLAlchemy, Python 3 compatibility fork. Performance improvements and suggestions are read

Blake VandeMerwe 27 Mar 10, 2022