We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

Overview

HuggingMolecules

License

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-trained models.

Quick tour

To quickly fine-tune a model on a dataset using the pytorch lightning package follow the below example based on the MAT model and the freesolv dataset:

from huggingmolecules import MatModel, MatFeaturizer

# The following import works only from the source code directory:
from experiments.src import TrainingModule, get_data_loaders

from torch.nn import MSELoss
from torch.optim import Adam

from pytorch_lightning import Trainer
from pytorch_lightning.metrics import MeanSquaredError

# Build and load the pre-trained model and the appropriate featurizer:
model = MatModel.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')

# Build the pytorch lightning training module:
pl_module = TrainingModule(model,
                           loss_fn=MSELoss(),
                           metric_cls=MeanSquaredError,
                           optimizer=Adam(model.parameters()))

# Build the data loader for the freesolv dataset:
train_dataloader, _, _ = get_data_loaders(featurizer,
                                          batch_size=32,
                                          task_name='ADME',
                                          dataset_name='hydrationfreeenergy_freesolv')

# Build the pytorch lightning trainer and fine-tune the module on the train dataset:
trainer = Trainer(max_epochs=100)
trainer.fit(pl_module, train_dataloader=train_dataloader)

# Make the prediction for the batch of SMILES strings:
batch = featurizer(['C/C=C/C', '[C]=O'])
output = pl_module.model(batch)

Installation

Create your conda environment and install the rdkit package:

conda create -n huggingmolecules python=3.8.5
conda activate huggingmolecules
conda install -c conda-forge rdkit==2020.09.1

Then install huggingmolecules from the cloned directory:

conda activate huggingmolecules
pip install -e ./src

Project Structure

The project consists of two main modules: src/ and experiments/ modules:

  • The src/ module contains abstract interfaces for pre-trained models along with their implementations based on the pytorch library. This module makes configuring, downloading and running existing models easy and out-of-the-box.
  • The experiments/ module makes use of abstract interfaces defined in the src/ module and implements scripts based on the pytorch lightning package for running various experiments. This module makes training, benchmarking and hyper-tuning of models flawless and easily extensible.

Supported models architectures

Huggingmolecules currently provides the following models architectures:

For ease of benchmarking, we also include wrappers in the experiments/ module for three other models architectures:

The src/ module

The implementations of the models in the src/ module are divided into three modules: configuration, featurization and models module. The relation between these modules is shown on the following examples based on the MAT model:

Configuration examples

from huggingmolecules import MatConfig

# Build the config with default parameters values, 
# except 'd_model' parameter, which is set to 1200:
config = MatConfig(d_model=1200)

# Build the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')

# Build the pre-defined config with 'init_type' parameter set to 'normal':
config = MatConfig.from_pretrained('mat_masking_20M', init_type='normal')

# Save the pre-defined config with the previous modification:
config.save_to_cache('mat_masking_20M_normal.json')

# Restore the previously saved config:
config = MatConfig.from_pretrained('mat_masking_20M_normal.json')

Featurization examples

from huggingmolecules import MatConfig, MatFeaturizer

# Build the featurizer with pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer(config)

# Build the featurizer in one line:
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')

# Encode (featurize) the batch of two SMILES strings: 
batch = featurizer(['C/C=C/C', '[C]=O'])

Models examples

from huggingmolecules import MatConfig, MatFeaturizer, MatModel

# Build the model with the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel(config)

# Load the pre-trained weights 
# (which do not include the last layer of the model)
model.load_weights('mat_masking_20M')

# Build the model and load the pre-trained weights in one line:
model = MatModel.from_pretrained('mat_masking_20M')

# Encode (featurize) the batch of two SMILES strings: 
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')
batch = featurizer(['C/C=C/C', '[C]=O'])

# Feed the model with the encoded batch:
output = model(batch)

# Save the weights of the model (usually after the fine-tuning process):
model.save_weights('tuned_mat_masking_20M.pt')

# Load the previously saved weights
# (which now includes all layers of the model):
model.load_weights('tuned_mat_masking_20M.pt')

# Load the previously saved weights, but without 
# the last layer of the model ('generator' in the case of the 'MatModel')
model.load_weights('tuned_mat_masking_20M.pt', excluded=['generator'])

# Build the model and load the previously saved weights:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel.from_pretrained('tuned_mat_masking_20M.pt',
                                 excluded=['generator'],
                                 config=config)

Running tests

To run base tests for src/ module, type:

pytest src/ --ignore=src/tests/downloading/

To additionally run tests for downloading module (which will download all models to your local computer and therefore may be slow), type:

pytest src/tests/downloading

The experiments/ module

Requirements

In addition to dependencies defined in the src/ module, the experiments/ module goes along with few others. To install them, run:

pip install -r experiments/requirements.txt

The following packages are crucial for functioning of the experiments/ module:

Neptune.ai

In addition, we recommend installing the neptune.ai package:

  1. Sign up to neptune.ai at https://neptune.ai/.

  2. Get your Neptune API token (see getting-started for help).

  3. Export your Neptune API token to NEPTUNE_API_TOKEN environment variable.

  4. Install neptune-client: pip install neptune-client.

  5. Enable neptune.ai in the experiments/configs/setup.gin file.

  6. Update neptune.project_name parameters in experiments/configs/bases/*.gin files.

Running scripts:

We recommend running experiments scripts from the source code. For the moment there are three scripts implemented:

  • experiments/scripts/train.py - for training with the pytorch lightning package
  • experiments/scripts/tune_hyper.py - for hyper-parameters tuning with the optuna package
  • experiments/scripts/benchmark.py - for benchmarking based on the hyper-parameters tuning (grid-search)

In general running scripts can be done with the following syntax:

python -m experiments.scripts. /
       -d  / 
       -m  /
       -b 

Then the script .py runs with functions/methods parameters values defined in the following gin-config files:

  1. experiments/configs/bases/.gin
  2. experiments/configs/datasets/.gin
  3. experiments/configs/models/.gin

If the binding flag -b is used, then bindings defined in overrides corresponding bindings defined in above gin-config files.

So for instance, to fine-tune the MAT model (pre-trained on masking_20M task) on the freesolv dataset using GPU 1, simply run:

python -m experiments.scripts.train /
       -d freesolv / 
       -m mat /
       -b model.pretrained_name=\"mat_masking_20M\"#train.gpus=[1]

or equivalently:

python -m experiments.scripts.train /
       -d freesolv / 
       -m mat /
       --model.pretrained_name mat_masking_20M /
       --train.gpus [1]

Local dataset

To use a local dataset, create an appropriate gin-config file in the experiments/configs/datasets directory and specify the data.data_path parameter within. For details see the get_data_split implementation.

Benchmarking

For the moment there is one benchmark available. It works as follows:

  • experiments/scripts/benchmark.py: on the given dataset we fine-tune the given model on 10 learning rates and 6 seeded data splits (60 fine-tunings in total). Then we choose that learning rate that minimizes an averaged (on 6 data splits) validation metric (metric computed on the validation dataset, e.g. RMSE). The result is the averaged value of test metric for the chosen learning rate.

Running a benchmark is essentially the same as running any other script from the experiments/ module. So for instance to benchmark the vanilla MAT model (without pre-training) on the Caco-2 dataset using GPU 0, simply run:

python -m experiments.scripts.benchmark /
       -d caco2 / 
       -m mat /
       --model.pretrained_name None /
       --train.gpus [0]

However, the above script will only perform 60 fine-tunings. It won't compute the final benchmark result. To do that wee need to run:

python -m experiments.scripts.benchmark --results_only /
       -d caco2 / 
       -m mat

The above script won't perform any fine-tuning, but will only compute the benchmark result. If we had neptune enabled in experiments/configs/setup.gin, all data necessary to compute the result will be fetched from the neptune server.

Benchmark results

We performed the benchmark described in Benchmarking as experiments/scripts/benchmark.py for various models architectures and pre-training tasks.

Summary

We report mean/median ranks of tested models across all datasets (both regression and classification ones). For detailed results see Regression and Classification sections.

model mean rank rank std
MAT 200k 5.6 3.5
MAT 2M 5.3 3.4
MAT 20M 4.1 2.2
GROVER Base 3.8 2.7
GROVER Large 3.6 2.4
ChemBERTa 7.4 2.8
MolBERT 5.9 2.9
D-MPNN 6.3 2.3
D-MPNN 2d 6.4 2.0
D-MPNN mc 5.3 2.1

Regression

As the metric we used MAE for QM7 and RMSE for the rest of datasets.

model FreeSolv Caco-2 Clearance QM7 Mean rank
MAT 200k 0.913 ± 0.196 0.405 ± 0.030 0.649 ± 0.341 87.578 ± 15.375 5.25
MAT 2M 0.898 ± 0.165 0.471 ± 0.070 0.655 ± 0.327 81.557 ± 5.088 6.75
MAT 20M 0.854 ± 0.197 0.432 ± 0.034 0.640 ± 0.335 81.797 ± 4.176 5.0
Grover Base 0.917 ± 0.195 0.419 ± 0.029 0.629 ± 0.335 62.266 ± 3.578 3.25
Grover Large 0.950 ± 0.202 0.414 ± 0.041 0.627 ± 0.340 64.941 ± 3.616 2.5
ChemBERTa 1.218 ± 0.245 0.430 ± 0.013 0.647 ± 0.314 177.242 ± 1.819 8.0
MolBERT 1.027 ± 0.244 0.483 ± 0.056 0.633 ± 0.332 177.117 ± 1.799 8.0
Chemprop 1.061 ± 0.168 0.446 ± 0.064 0.628 ± 0.339 74.831 ± 4.792 5.5
Chemprop 2d 1 1.038 ± 0.235 0.454 ± 0.049 0.628 ± 0.336 77.912 ± 10.231 6.0
Chemprop mc 2 0.995 ± 0.136 0.438 ± 0.053 0.627 ± 0.337 75.575 ± 4.683 4.25

1 chemprop with additional rdkit_2d_normalized features generator
2 chemprop with additional morgan_count features generator

Classification

We used ROC AUC as the metric.

model HIA Bioavailability PPBR Tox21 (NR-AR) BBBP Mean rank
MAT 200k 0.943 ± 0.015 0.660 ± 0.052 0.896 ± 0.027 0.775 ± 0.035 0.709 ± 0.022 5.8
MAT 2M 0.941 ± 0.013 0.712 ± 0.076 0.905 ± 0.019 0.779 ± 0.056 0.713 ± 0.022 4.2
MAT 20M 0.935 ± 0.017 0.732 ± 0.082 0.891 ± 0.019 0.779 ± 0.056 0.735 ± 0.006 3.4
Grover Base 0.931 ± 0.021 0.750 ± 0.037 0.901 ± 0.036 0.750 ± 0.085 0.735 ± 0.006 4.0
Grover Large 0.932 ± 0.023 0.747 ± 0.062 0.901 ± 0.033 0.757 ± 0.057 0.757 ± 0.057 4.2
ChemBERTa 0.923 ± 0.032 0.666 ± 0.041 0.869 ± 0.032 0.779 ± 0.044 0.717 ± 0.009 7.0
MolBERT 0.942 ± 0.011 0.737 ± 0.085 0.889 ± 0.039 0.761 ± 0.058 0.742 ± 0.020 4.6
Chemprop 0.924 ± 0.069 0.724 ± 0.064 0.847 ± 0.052 0.766 ± 0.040 0.726 ± 0.008 7.0
Chemprop 2d 0.923 ± 0.015 0.712 ± 0.067 0.874 ± 0.030 0.775 ± 0.041 0.724 ± 0.006 6.8
Chemprop mc 0.924 ± 0.082 0.740 ± 0.060 0.869 ± 0.033 0.772 ± 0.041 0.722 ± 0.008 6.2
Owner
GMUM
Group of Machine Learning Research, Jagiellonian University
GMUM
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Fang Zhonghao 13 Nov 19, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022