We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

Overview

HuggingMolecules

License

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-trained models.

Quick tour

To quickly fine-tune a model on a dataset using the pytorch lightning package follow the below example based on the MAT model and the freesolv dataset:

from huggingmolecules import MatModel, MatFeaturizer

# The following import works only from the source code directory:
from experiments.src import TrainingModule, get_data_loaders

from torch.nn import MSELoss
from torch.optim import Adam

from pytorch_lightning import Trainer
from pytorch_lightning.metrics import MeanSquaredError

# Build and load the pre-trained model and the appropriate featurizer:
model = MatModel.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')

# Build the pytorch lightning training module:
pl_module = TrainingModule(model,
                           loss_fn=MSELoss(),
                           metric_cls=MeanSquaredError,
                           optimizer=Adam(model.parameters()))

# Build the data loader for the freesolv dataset:
train_dataloader, _, _ = get_data_loaders(featurizer,
                                          batch_size=32,
                                          task_name='ADME',
                                          dataset_name='hydrationfreeenergy_freesolv')

# Build the pytorch lightning trainer and fine-tune the module on the train dataset:
trainer = Trainer(max_epochs=100)
trainer.fit(pl_module, train_dataloader=train_dataloader)

# Make the prediction for the batch of SMILES strings:
batch = featurizer(['C/C=C/C', '[C]=O'])
output = pl_module.model(batch)

Installation

Create your conda environment and install the rdkit package:

conda create -n huggingmolecules python=3.8.5
conda activate huggingmolecules
conda install -c conda-forge rdkit==2020.09.1

Then install huggingmolecules from the cloned directory:

conda activate huggingmolecules
pip install -e ./src

Project Structure

The project consists of two main modules: src/ and experiments/ modules:

  • The src/ module contains abstract interfaces for pre-trained models along with their implementations based on the pytorch library. This module makes configuring, downloading and running existing models easy and out-of-the-box.
  • The experiments/ module makes use of abstract interfaces defined in the src/ module and implements scripts based on the pytorch lightning package for running various experiments. This module makes training, benchmarking and hyper-tuning of models flawless and easily extensible.

Supported models architectures

Huggingmolecules currently provides the following models architectures:

For ease of benchmarking, we also include wrappers in the experiments/ module for three other models architectures:

The src/ module

The implementations of the models in the src/ module are divided into three modules: configuration, featurization and models module. The relation between these modules is shown on the following examples based on the MAT model:

Configuration examples

from huggingmolecules import MatConfig

# Build the config with default parameters values, 
# except 'd_model' parameter, which is set to 1200:
config = MatConfig(d_model=1200)

# Build the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')

# Build the pre-defined config with 'init_type' parameter set to 'normal':
config = MatConfig.from_pretrained('mat_masking_20M', init_type='normal')

# Save the pre-defined config with the previous modification:
config.save_to_cache('mat_masking_20M_normal.json')

# Restore the previously saved config:
config = MatConfig.from_pretrained('mat_masking_20M_normal.json')

Featurization examples

from huggingmolecules import MatConfig, MatFeaturizer

# Build the featurizer with pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer(config)

# Build the featurizer in one line:
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')

# Encode (featurize) the batch of two SMILES strings: 
batch = featurizer(['C/C=C/C', '[C]=O'])

Models examples

from huggingmolecules import MatConfig, MatFeaturizer, MatModel

# Build the model with the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel(config)

# Load the pre-trained weights 
# (which do not include the last layer of the model)
model.load_weights('mat_masking_20M')

# Build the model and load the pre-trained weights in one line:
model = MatModel.from_pretrained('mat_masking_20M')

# Encode (featurize) the batch of two SMILES strings: 
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')
batch = featurizer(['C/C=C/C', '[C]=O'])

# Feed the model with the encoded batch:
output = model(batch)

# Save the weights of the model (usually after the fine-tuning process):
model.save_weights('tuned_mat_masking_20M.pt')

# Load the previously saved weights
# (which now includes all layers of the model):
model.load_weights('tuned_mat_masking_20M.pt')

# Load the previously saved weights, but without 
# the last layer of the model ('generator' in the case of the 'MatModel')
model.load_weights('tuned_mat_masking_20M.pt', excluded=['generator'])

# Build the model and load the previously saved weights:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel.from_pretrained('tuned_mat_masking_20M.pt',
                                 excluded=['generator'],
                                 config=config)

Running tests

To run base tests for src/ module, type:

pytest src/ --ignore=src/tests/downloading/

To additionally run tests for downloading module (which will download all models to your local computer and therefore may be slow), type:

pytest src/tests/downloading

The experiments/ module

Requirements

In addition to dependencies defined in the src/ module, the experiments/ module goes along with few others. To install them, run:

pip install -r experiments/requirements.txt

The following packages are crucial for functioning of the experiments/ module:

Neptune.ai

In addition, we recommend installing the neptune.ai package:

  1. Sign up to neptune.ai at https://neptune.ai/.

  2. Get your Neptune API token (see getting-started for help).

  3. Export your Neptune API token to NEPTUNE_API_TOKEN environment variable.

  4. Install neptune-client: pip install neptune-client.

  5. Enable neptune.ai in the experiments/configs/setup.gin file.

  6. Update neptune.project_name parameters in experiments/configs/bases/*.gin files.

Running scripts:

We recommend running experiments scripts from the source code. For the moment there are three scripts implemented:

  • experiments/scripts/train.py - for training with the pytorch lightning package
  • experiments/scripts/tune_hyper.py - for hyper-parameters tuning with the optuna package
  • experiments/scripts/benchmark.py - for benchmarking based on the hyper-parameters tuning (grid-search)

In general running scripts can be done with the following syntax:

python -m experiments.scripts. /
       -d  / 
       -m  /
       -b 

Then the script .py runs with functions/methods parameters values defined in the following gin-config files:

  1. experiments/configs/bases/.gin
  2. experiments/configs/datasets/.gin
  3. experiments/configs/models/.gin

If the binding flag -b is used, then bindings defined in overrides corresponding bindings defined in above gin-config files.

So for instance, to fine-tune the MAT model (pre-trained on masking_20M task) on the freesolv dataset using GPU 1, simply run:

python -m experiments.scripts.train /
       -d freesolv / 
       -m mat /
       -b model.pretrained_name=\"mat_masking_20M\"#train.gpus=[1]

or equivalently:

python -m experiments.scripts.train /
       -d freesolv / 
       -m mat /
       --model.pretrained_name mat_masking_20M /
       --train.gpus [1]

Local dataset

To use a local dataset, create an appropriate gin-config file in the experiments/configs/datasets directory and specify the data.data_path parameter within. For details see the get_data_split implementation.

Benchmarking

For the moment there is one benchmark available. It works as follows:

  • experiments/scripts/benchmark.py: on the given dataset we fine-tune the given model on 10 learning rates and 6 seeded data splits (60 fine-tunings in total). Then we choose that learning rate that minimizes an averaged (on 6 data splits) validation metric (metric computed on the validation dataset, e.g. RMSE). The result is the averaged value of test metric for the chosen learning rate.

Running a benchmark is essentially the same as running any other script from the experiments/ module. So for instance to benchmark the vanilla MAT model (without pre-training) on the Caco-2 dataset using GPU 0, simply run:

python -m experiments.scripts.benchmark /
       -d caco2 / 
       -m mat /
       --model.pretrained_name None /
       --train.gpus [0]

However, the above script will only perform 60 fine-tunings. It won't compute the final benchmark result. To do that wee need to run:

python -m experiments.scripts.benchmark --results_only /
       -d caco2 / 
       -m mat

The above script won't perform any fine-tuning, but will only compute the benchmark result. If we had neptune enabled in experiments/configs/setup.gin, all data necessary to compute the result will be fetched from the neptune server.

Benchmark results

We performed the benchmark described in Benchmarking as experiments/scripts/benchmark.py for various models architectures and pre-training tasks.

Summary

We report mean/median ranks of tested models across all datasets (both regression and classification ones). For detailed results see Regression and Classification sections.

model mean rank rank std
MAT 200k 5.6 3.5
MAT 2M 5.3 3.4
MAT 20M 4.1 2.2
GROVER Base 3.8 2.7
GROVER Large 3.6 2.4
ChemBERTa 7.4 2.8
MolBERT 5.9 2.9
D-MPNN 6.3 2.3
D-MPNN 2d 6.4 2.0
D-MPNN mc 5.3 2.1

Regression

As the metric we used MAE for QM7 and RMSE for the rest of datasets.

model FreeSolv Caco-2 Clearance QM7 Mean rank
MAT 200k 0.913 ± 0.196 0.405 ± 0.030 0.649 ± 0.341 87.578 ± 15.375 5.25
MAT 2M 0.898 ± 0.165 0.471 ± 0.070 0.655 ± 0.327 81.557 ± 5.088 6.75
MAT 20M 0.854 ± 0.197 0.432 ± 0.034 0.640 ± 0.335 81.797 ± 4.176 5.0
Grover Base 0.917 ± 0.195 0.419 ± 0.029 0.629 ± 0.335 62.266 ± 3.578 3.25
Grover Large 0.950 ± 0.202 0.414 ± 0.041 0.627 ± 0.340 64.941 ± 3.616 2.5
ChemBERTa 1.218 ± 0.245 0.430 ± 0.013 0.647 ± 0.314 177.242 ± 1.819 8.0
MolBERT 1.027 ± 0.244 0.483 ± 0.056 0.633 ± 0.332 177.117 ± 1.799 8.0
Chemprop 1.061 ± 0.168 0.446 ± 0.064 0.628 ± 0.339 74.831 ± 4.792 5.5
Chemprop 2d 1 1.038 ± 0.235 0.454 ± 0.049 0.628 ± 0.336 77.912 ± 10.231 6.0
Chemprop mc 2 0.995 ± 0.136 0.438 ± 0.053 0.627 ± 0.337 75.575 ± 4.683 4.25

1 chemprop with additional rdkit_2d_normalized features generator
2 chemprop with additional morgan_count features generator

Classification

We used ROC AUC as the metric.

model HIA Bioavailability PPBR Tox21 (NR-AR) BBBP Mean rank
MAT 200k 0.943 ± 0.015 0.660 ± 0.052 0.896 ± 0.027 0.775 ± 0.035 0.709 ± 0.022 5.8
MAT 2M 0.941 ± 0.013 0.712 ± 0.076 0.905 ± 0.019 0.779 ± 0.056 0.713 ± 0.022 4.2
MAT 20M 0.935 ± 0.017 0.732 ± 0.082 0.891 ± 0.019 0.779 ± 0.056 0.735 ± 0.006 3.4
Grover Base 0.931 ± 0.021 0.750 ± 0.037 0.901 ± 0.036 0.750 ± 0.085 0.735 ± 0.006 4.0
Grover Large 0.932 ± 0.023 0.747 ± 0.062 0.901 ± 0.033 0.757 ± 0.057 0.757 ± 0.057 4.2
ChemBERTa 0.923 ± 0.032 0.666 ± 0.041 0.869 ± 0.032 0.779 ± 0.044 0.717 ± 0.009 7.0
MolBERT 0.942 ± 0.011 0.737 ± 0.085 0.889 ± 0.039 0.761 ± 0.058 0.742 ± 0.020 4.6
Chemprop 0.924 ± 0.069 0.724 ± 0.064 0.847 ± 0.052 0.766 ± 0.040 0.726 ± 0.008 7.0
Chemprop 2d 0.923 ± 0.015 0.712 ± 0.067 0.874 ± 0.030 0.775 ± 0.041 0.724 ± 0.006 6.8
Chemprop mc 0.924 ± 0.082 0.740 ± 0.060 0.869 ± 0.033 0.772 ± 0.041 0.722 ± 0.008 6.2
Owner
GMUM
Group of Machine Learning Research, Jagiellonian University
GMUM
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022