Python bindings and utilities for GeoJSON

Overview

geojson

GitHub Actions Codecov Jazzband

This Python library contains:

Table of Contents

Installation

geojson is compatible with Python 3.6, 3.7 and 3.8. The recommended way to install is via pip:

pip install geojson

GeoJSON Objects

This library implements all the GeoJSON Objects described in The GeoJSON Format Specification.

All object keys can also be used as attributes.

The objects contained in GeometryCollection and FeatureCollection can be indexed directly.

Point

>>> from geojson import Point

>>> Point((-115.81, 37.24))  # doctest: +ELLIPSIS
{"coordinates": [-115.8..., 37.2...], "type": "Point"}

Visualize the result of the example above here. General information about Point can be found in Section 3.1.2 and Appendix A: Points within The GeoJSON Format Specification.

MultiPoint

>>> from geojson import MultiPoint

>>> MultiPoint([(-155.52, 19.61), (-156.22, 20.74), (-157.97, 21.46)])  # doctest: +ELLIPSIS
{"coordinates": [[-155.5..., 19.6...], [-156.2..., 20.7...], [-157.9..., 21.4...]], "type": "MultiPoint"}

Visualize the result of the example above here. General information about MultiPoint can be found in Section 3.1.3 and Appendix A: MultiPoints within The GeoJSON Format Specification.

LineString

>>> from geojson import LineString

>>> LineString([(8.919, 44.4074), (8.923, 44.4075)])  # doctest: +ELLIPSIS
{"coordinates": [[8.91..., 44.407...], [8.92..., 44.407...]], "type": "LineString"}

Visualize the result of the example above here. General information about LineString can be found in Section 3.1.4 and Appendix A: LineStrings within The GeoJSON Format Specification.

MultiLineString

>>> from geojson import MultiLineString

>>> MultiLineString([
...     [(3.75, 9.25), (-130.95, 1.52)],
...     [(23.15, -34.25), (-1.35, -4.65), (3.45, 77.95)]
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[3.7..., 9.2...], [-130.9..., 1.52...]], [[23.1..., -34.2...], [-1.3..., -4.6...], [3.4..., 77.9...]]], "type": "MultiLineString"}

Visualize the result of the example above here. General information about MultiLineString can be found in Section 3.1.5 and Appendix A: MultiLineStrings within The GeoJSON Format Specification.

Polygon

>>> from geojson import Polygon

>>> # no hole within polygon
>>> Polygon([[(2.38, 57.322), (23.194, -20.28), (-120.43, 19.15), (2.38, 57.322)]])  # doctest: +ELLIPSIS
{"coordinates": [[[2.3..., 57.32...], [23.19..., -20.2...], [-120.4..., 19.1...]]], "type": "Polygon"}

>>> # hole within polygon
>>> Polygon([
...     [(2.38, 57.322), (23.194, -20.28), (-120.43, 19.15), (2.38, 57.322)],
...     [(-5.21, 23.51), (15.21, -10.81), (-20.51, 1.51), (-5.21, 23.51)]
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[2.3..., 57.32...], [23.19..., -20.2...], [-120.4..., 19.1...]], [[-5.2..., 23.5...], [15.2..., -10.8...], [-20.5..., 1.5...], [-5.2..., 23.5...]]], "type": "Polygon"}

Visualize the results of the example above here. General information about Polygon can be found in Section 3.1.6 and Appendix A: Polygons within The GeoJSON Format Specification.

MultiPolygon

>>> from geojson import MultiPolygon

>>> MultiPolygon([
...     ([(3.78, 9.28), (-130.91, 1.52), (35.12, 72.234), (3.78, 9.28)],),
...     ([(23.18, -34.29), (-1.31, -4.61), (3.41, 77.91), (23.18, -34.29)],)
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[[3.7..., 9.2...], [-130.9..., 1.5...], [35.1..., 72.23...]]], [[[23.1..., -34.2...], [-1.3..., -4.6...], [3.4..., 77.9...]]]], "type": "MultiPolygon"}

Visualize the result of the example above here. General information about MultiPolygon can be found in Section 3.1.7 and Appendix A: MultiPolygons within The GeoJSON Format Specification.

GeometryCollection

>>> from geojson import GeometryCollection, Point, LineString

>>> my_point = Point((23.532, -63.12))

>>> my_line = LineString([(-152.62, 51.21), (5.21, 10.69)])

>>> geo_collection = GeometryCollection([my_point, my_line])

>>> geo_collection  # doctest: +ELLIPSIS
{"geometries": [{"coordinates": [23.53..., -63.1...], "type": "Point"}, {"coordinates": [[-152.6..., 51.2...], [5.2..., 10.6...]], "type": "LineString"}], "type": "GeometryCollection"}

>>> geo_collection[1]
{"coordinates": [[-152.62, 51.21], [5.21, 10.69]], "type": "LineString"}

>>> geo_collection[0] == geo_collection.geometries[0]
True

Visualize the result of the example above here. General information about GeometryCollection can be found in Section 3.1.8 and Appendix A: GeometryCollections within The GeoJSON Format Specification.

Feature

>>> from geojson import Feature, Point

>>> my_point = Point((-3.68, 40.41))

>>> Feature(geometry=my_point)  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "properties": {}, "type": "Feature"}

>>> Feature(geometry=my_point, properties={"country": "Spain"})  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "properties": {"country": "Spain"}, "type": "Feature"}

>>> Feature(geometry=my_point, id=27)  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "id": 27, "properties": {}, "type": "Feature"}

Visualize the results of the examples above here. General information about Feature can be found in Section 3.2 within The GeoJSON Format Specification.

FeatureCollection

>>> from geojson import Feature, Point, FeatureCollection

>>> my_feature = Feature(geometry=Point((1.6432, -19.123)))

>>> my_other_feature = Feature(geometry=Point((-80.234, -22.532)))

>>> feature_collection = FeatureCollection([my_feature, my_other_feature])

>>> feature_collection # doctest: +ELLIPSIS
{"features": [{"geometry": {"coordinates": [1.643..., -19.12...], "type": "Point"}, "properties": {}, "type": "Feature"}, {"geometry": {"coordinates": [-80.23..., -22.53...], "type": "Point"}, "properties": {}, "type": "Feature"}], "type": "FeatureCollection"}

>>> feature_collection.errors()
[]

>>> (feature_collection[0] == feature_collection['features'][0], feature_collection[1] == my_other_feature)
(True, True)

Visualize the result of the example above here. General information about FeatureCollection can be found in Section 3.3 within The GeoJSON Format Specification.

GeoJSON encoding/decoding

All of the GeoJSON Objects implemented in this library can be encoded and decoded into raw GeoJSON with the geojson.dump, geojson.dumps, geojson.load, and geojson.loads functions. Note that each of these functions is a wrapper around the core json function with the same name, and will pass through any additional arguments. This allows you to control the JSON formatting or parsing behavior with the underlying core json functions.

>>> import geojson

>>> my_point = geojson.Point((43.24, -1.532))

>>> my_point  # doctest: +ELLIPSIS
{"coordinates": [43.2..., -1.53...], "type": "Point"}

>>> dump = geojson.dumps(my_point, sort_keys=True)

>>> dump  # doctest: +ELLIPSIS
'{"coordinates": [43.2..., -1.53...], "type": "Point"}'

>>> geojson.loads(dump)  # doctest: +ELLIPSIS
{"coordinates": [43.2..., -1.53...], "type": "Point"}

Custom classes

This encoding/decoding functionality shown in the previous can be extended to custom classes using the interface described by the __geo_interface__ Specification.

>>> import geojson

>>> class MyPoint():
...     def __init__(self, x, y):
...         self.x = x
...         self.y = y
...
...     @property
...     def __geo_interface__(self):
...         return {'type': 'Point', 'coordinates': (self.x, self.y)}

>>> point_instance = MyPoint(52.235, -19.234)

>>> geojson.dumps(point_instance, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [52.23..., -19.23...], "type": "Point"}'

Default and custom precision

GeoJSON Object-based classes in this package have an additional precision attribute which rounds off coordinates to 6 decimal places (roughly 0.1 meters) by default and can be customized per object instance.

>>> from geojson import Point

>>> Point((-115.123412341234, 37.123412341234))  # rounded to 6 decimal places by default
{"coordinates": [-115.123412, 37.123412], "type": "Point"}

>>> Point((-115.12341234, 37.12341234), precision=8)  # rounded to 8 decimal places
{"coordinates": [-115.12341234, 37.12341234], "type": "Point"}

Helpful utilities

coords

geojson.utils.coords yields all coordinate tuples from a geometry or feature object.

>>> import geojson

>>> my_line = LineString([(-152.62, 51.21), (5.21, 10.69)])

>>> my_feature = geojson.Feature(geometry=my_line)

>>> list(geojson.utils.coords(my_feature))  # doctest: +ELLIPSIS
[(-152.62..., 51.21...), (5.21..., 10.69...)]

map_coords

geojson.utils.map_coords maps a function over all coordinate values and returns a geometry of the same type. Useful for scaling a geometry.

>>> import geojson

>>> new_point = geojson.utils.map_coords(lambda x: x/2, geojson.Point((-115.81, 37.24)))

>>> geojson.dumps(new_point, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [-57.905..., 18.62...], "type": "Point"}'

map_tuples

geojson.utils.map_tuples maps a function over all coordinates and returns a geometry of the same type. Useful for changing coordinate order or applying coordinate transforms.

>>> import geojson

>>> new_point = geojson.utils.map_tuples(lambda c: (c[1], c[0]), geojson.Point((-115.81, 37.24)))

>>> geojson.dumps(new_point, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [37.24..., -115.81], "type": "Point"}'

map_geometries

geojson.utils.map_geometries maps a function over each geometry in the input.

>>> import geojson

>>> new_point = geojson.utils.map_geometries(lambda g: geojson.MultiPoint([g["coordinates"]]), geojson.GeometryCollection([geojson.Point((-115.81, 37.24))]))

>>> geojson.dumps(new_point, sort_keys=True)
'{"geometries": [{"coordinates": [[-115.81, 37.24]], "type": "MultiPoint"}], "type": "GeometryCollection"}'

validation

is_valid property provides simple validation of GeoJSON objects.

>>> import geojson

>>> obj = geojson.Point((-3.68,40.41,25.14,10.34))
>>> obj.is_valid
False

errors method provides collection of errors when validation GeoJSON objects.

>>> import geojson

>>> obj = geojson.Point((-3.68,40.41,25.14,10.34))
>>> obj.errors()
'a position must have exactly 2 or 3 values'

generate_random

geojson.utils.generate_random yields a geometry type with random data

>>> import geojson

>>> geojson.utils.generate_random("LineString")  # doctest: +ELLIPSIS
{"coordinates": [...], "type": "LineString"}

>>> geojson.utils.generate_random("Polygon")  # doctest: +ELLIPSIS
{"coordinates": [...], "type": "Polygon"}

Development

To build this project, run python setup.py build. To run the unit tests, run python setup.py test. To run the style checks, run flake8 (install flake8 if needed).

Credits

This GUI app was created to show the detailed information about the weather in any city selected by user

WeatherApp Content Brief description Tools Features Hotkeys How it works Screenshots Ways to improve the project Installation Brief description This G

TheBugYouCantFix 5 Dec 30, 2022
Logging the position of the car on an sdcard

audi-mmi-3g-gps-logging Logging the position of the car on an sdcard, startup script origin not clear to me, logging setup and time change is what I d

2 May 31, 2022
Computer Vision in Python

Mahotas Python Computer Vision Library Mahotas is a library of fast computer vision algorithms (all implemented in C++ for speed) operating over numpy

Luis Pedro Coelho 792 Dec 20, 2022
A modern, geometric typeface by @chrismsimpson (last commit @ 85fa625 Jun 9, 2020 before deletion)

Metropolis A modern, geometric typeface. Influenced by other popular geometric, minimalist sans-serif typefaces of the new millenium. Designed for opt

Darius 183 Dec 25, 2022
Python renderer for OpenStreetMap with custom icons intended to display as many map features as possible

Map Machine project consists of Python OpenStreetMap renderer: SVG map generation, SVG and PNG tile generation, RΓΆntgen icon set: unique CC-BY 4.0 map

Sergey Vartanov 0 Dec 18, 2022
Color correction plugin for rasterio

rio-color A rasterio plugin for applying basic color-oriented image operations to geospatial rasters. Goals No heavy dependencies: rio-color is purpos

Mapbox 111 Nov 15, 2022
:earth_asia: Python Geocoder

Python Geocoder Simple and consistent geocoding library written in Python. Table of content Overview A glimpse at the API Forward Multiple results Rev

Denis 1.5k Jan 02, 2023
An API built to format given addresses using Python and Flask.

An API built to format given addresses using Python and Flask. About The API returns properly formatted data, i.e. removing duplicate fields, distingu

1 Feb 27, 2022
Record railway train route profile with GNSS tools

Train route profile recording with GNSS technology based on ARDUINO platform Project target Develop GNSS recording tools based on the ARDUINO platform

tomcom 1 Jan 01, 2022
Geographic add-ons for Django REST Framework. Maintained by the OpenWISP Project.

Geographic add-ons for Django REST Framework. Maintained by the OpenWISP Project.

OpenWISP 982 Jan 06, 2023
Cloud Optimized GeoTIFF creation and validation plugin for rasterio

rio-cogeo Cloud Optimized GeoTIFF (COG) creation and validation plugin for Rasterio. Documentation: https://cogeotiff.github.io/rio-cogeo/ Source Code

216 Dec 31, 2022
LicenseLocation - License Location With Python

LicenseLocation Hi,everyone! ❀ 🧑 πŸ’› πŸ’š πŸ’™ πŸ’œ This is my first project! βœ” Actual

The Bin 1 Jan 25, 2022
Tile Map Service and OGC Tiles API for QGIS Server

Tiles API Add tiles API to QGIS Server Tiles Map Service API OGC Tiles API Tile Map Service API - TMS The TMS API provides these URLs: /tms/? to get i

3Liz 6 Dec 01, 2021
Geocoding library for Python.

geopy geopy is a Python client for several popular geocoding web services. geopy makes it easy for Python developers to locate the coordinates of addr

geopy 3.8k Dec 30, 2022
Manage your XYZ Hub or HERE Data Hub spaces from Python.

XYZ Spaces for Python Manage your XYZ Hub or HERE Data Hub spaces and Interactive Map Layer from Python. FEATURED IN: Online Python Machine Learning C

HERE Technologies 30 Oct 18, 2022
Build, deploy and extract satellite public constellations with one command line.

SatExtractor Build, deploy and extract satellite public constellations with one command line. Table of Contents About The Project Getting Started Stru

Frontier Development Lab 70 Nov 18, 2022
A Python tool to display geolocation information in the traceroute.

IP2Trace Python IP2Trace Python is a Python tool allowing user to get IP address information such as country, region, city, latitude, longitude, zip c

IP2Location 22 Jan 08, 2023
This app displays interesting statistical weather records and trends which can be used in climate related research including study of global warming.

This app displays interesting statistical weather records and trends which can be used in climate related research including study of global warming.

0 Dec 27, 2021
h3-js provides a JavaScript version of H3, a hexagon-based geospatial indexing system.

h3-js The h3-js library provides a pure-JavaScript version of the H3 Core Library, a hexagon-based geographic grid system. It can be used either in No

Uber Open Source 648 Jan 07, 2023
Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Ayush Mishra 3 May 06, 2022