Full ELT process on GCP environment.

Overview

Rent Houses Germany - GCP Pipeline

gcp_pipeline

Project:

  • The goal of the project is to extract data about house rentals in Germany, store, process and analyze it using GCP tools. The focus here is to practice and get used to the GCP environment.

Main Tools:

Python

Cloud Storage

BigQuery

Dataprep

Data Studio

Looker

Crontab

Bash

Data Extraction and Storage:

Source: https://www.immonet.de/

  • The data extraction is done in 3 steps where first the quantity of offers for each city is collected, them the ID's for each offers and finaly the raw information about each rent offer is extracted.

  • The first script is responsible to scrape the number of offers in each city and save the information as a CSV file in Cloud Storage. The second script gets the previous CSV file from Cloud Storage and uses it to scrape all ID's from each offers in each city and load the information back to Cloud Storage as a new CSV file. The third script gets the rent offer's ID info from Cloud Storage and perform a web-scraper to collect all information for each ID and save it back to Cloud Storage, again as a CSV file containing all raw infos about the offers.

  • All the extractions steps are scheduled though a Crontab Job to run everyday at 0h.

cronjob

Data Preprocessing.

  • As the last CSV file contains all the RAW information about each offer grouped in only two columns, a preprocessing step is needed. The preprocessor script gets the CSV file with the raw information from Cloud Storage, separates the data into the appropriate columns already performing some cleaning like excluding not needed characters. Again, the preprocessed CSV file is stored in Cloud Storage.

all_offers_infos_raw.csv:

raw_infos

all_offers_infos_pp.csv:

raw_infos

Data Cleaning and Preparation.

  • Here is used Cloud Dataprep to clean and prepare the data for further use. To transform the rent data into useble information first we need to clean and prepare it. Dataprep is a realy good tool where we can look inside the data and can perform all kind of filtering, removing and preparations. Dataprep gets the preprocessed csv file from Cloud Storage and runs a "recipe" tranforming the data to be analyzed. Dataprep saves the cleaned and final csv file both into Data Storage (a backup) and into a BigQuery warehouse.

dataprepJob

  • The Dataproc job was scheduled to run everyday 7 A.M and update the data source for the reports.

Data Analysis - Data Studio Report.

  • With the data cleaned and loaded into BigQuery it's time to display the information. The GCP tools used to display the data was Data Studio and Looker. First I used Data Studio to make a simple report summaring all the rent houses main informantion and schedule to send an e-mail with the updated report avery day at 8 A.M.

    data_studio_dashboard

German Rent Report - 27.11.21

Data Analysis - Looker Dashboard.

  • I'm still working on it.

Conclusion.

  • The tools available on Google Cloud Platform are simply amazing. As in all Cloud platforms, the tools are available and are arranged in a way to make the user's life easier, it is really cool and very practical to build an entire ETL/ELT process using the available tools and it makes everything much easier and agile. The fact that you don't have to deal with hardware fiscally, the automated scalability, the advanced security controls, the availability of virtually all the necessary tools in one place, the integration between the tools, and all the other characteristics of cloud environments contribute greatly to the considerable increase in productivity, in environments like these we only need to focus on doing the main part of our job, on delivering the result, and that is amazing. For me it has been a very pleasant experience to work and experience these features, the next steps now are to continue learning and applying them and in the future to seek certifications.
Owner
Felipe Demenech Vasconcelos
In a constant learning path...
Felipe Demenech Vasconcelos
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
BErt-like Neurophysiological Data Representation

BENDR BErt-like Neurophysiological Data Representation This repository contains the source code for reproducing, or extending the BERT-like self-super

114 Dec 23, 2022
BIGDATA SIMULATION ONE PIECE WORLD CENSUS

ONE PIECE is a Japanese manga of great international success. The story turns inhabited in a fictional world, tells the adventures of a young man whose body gained rubber properties after accidentall

Maycon Cypriano 3 Jun 30, 2022
track your GitHub statistics

GitHub-Stalker track your github statistics 👀 features find new followers or unfollowers find who got a star on your project or remove stars find who

Bahadır Araz 34 Nov 18, 2022
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement

Manuel Bressan 2 Nov 18, 2021
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
The Master's in Data Science Program run by the Faculty of Mathematics and Information Science

The Master's in Data Science Program run by the Faculty of Mathematics and Information Science is among the first European programs in Data Science and is fully focused on data engineering and data a

Amir Ali 2 Jun 17, 2022
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

hyeong 4 Dec 28, 2021
This repository contains some analysis of possible nerdle answers

Nerdle Analysis https://nerdlegame.com/ This repository contains some analysis of possible nerdle answers. Here's a quick overview: nerdle.py contains

0 Dec 16, 2022
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022
A program that uses an API and a AI model to get info of sotcks

Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks

1 Dec 17, 2021
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023
CSV database for chihuahua (HUAHUA) blockchain transactions

super-fiesta Shamelessly ripped components from https://github.com/hodgerpodger/staketaxcsv - Thanks for doing all the hard work. This code does only

Arlene Macciaveli 1 Jan 07, 2022
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner.

CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner. It is aimed to integrate this tool with several more features including providing a U

Ravi Prakash 3 Jun 27, 2021
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022