A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Related tags

Deep LearningOrchard
Overview

Orchard Dataset

This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: State-of-the-Art Neural Sequence Models Fail To Generalize paper. The coode to train and test Transformers and Bi-directional LSTM models was adapted from
Fairseq.

Software Requirements

Python 3.6, PyTorch 1.4 are required for the current codebase. Install apex to enable fp16 training.

Steps

  1. Install PyTorch and apex by running pip install -r requirements.txt

  2. Generate Orchard

  • Generate Orchard-easy Dataset with MIN-MAX operators. python generate_tree.py --c 0 --mm --size 50 --dir /path_to_data/

    • Generate Orchard-hard Dataset with FIRST-LAST operators. python generate_tree.py --c 1.0 --fl --size 50 --dir /path_to_data/
  1. Pre-process Dataset

    • Pre-process Dataset to generate translation dictionaries python preprocess.py --trainpref /path_to_data/train --validpref /path_to_data/valid --source-lang input --target-lang label --task translation --testpref /path_to_data --destdir /path_to_data
  2. Train model

    • Train Transformer python train.py /path_to_data/ --save-dir /path_to_data/ --task translation --source-lang input --target-lang label --batch-size 128 --arch transformer --optimizer adam --lr 5e-4 --lr-scheduler inverse_sqrt --fp16 --adam-betas '(0.9, 0.98)' --weight-decay 1.2e-6 --clip-norm 1. --dropout 0.3 --save-interval 50 --max-epoch 500

    • Train LSTM python train.py data-orchard-mmc --save-dir data-orchard-mmc --task translation --arch lstm --source-lang input --target-lang label --batch-size 128 --save-interval 100 --max-epoch 500 --lr 5e-3 --fp16

  3. Generate predictions

    • Test model on depth of tree 7 python generate.py /path_to_data/test7 --path /path_to_data/checkpoint500.pt --batch-size 32 --beam 5
Owner
Bill Pung
Data Scientist working on Artificial Intelligence. Happy to connect on LinkedIn: https://www.linkedin.com/in/billptw/
Bill Pung
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
LBK 35 Dec 26, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023