A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Related tags

Deep LearningOrchard
Overview

Orchard Dataset

This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: State-of-the-Art Neural Sequence Models Fail To Generalize paper. The coode to train and test Transformers and Bi-directional LSTM models was adapted from
Fairseq.

Software Requirements

Python 3.6, PyTorch 1.4 are required for the current codebase. Install apex to enable fp16 training.

Steps

  1. Install PyTorch and apex by running pip install -r requirements.txt

  2. Generate Orchard

  • Generate Orchard-easy Dataset with MIN-MAX operators. python generate_tree.py --c 0 --mm --size 50 --dir /path_to_data/

    • Generate Orchard-hard Dataset with FIRST-LAST operators. python generate_tree.py --c 1.0 --fl --size 50 --dir /path_to_data/
  1. Pre-process Dataset

    • Pre-process Dataset to generate translation dictionaries python preprocess.py --trainpref /path_to_data/train --validpref /path_to_data/valid --source-lang input --target-lang label --task translation --testpref /path_to_data --destdir /path_to_data
  2. Train model

    • Train Transformer python train.py /path_to_data/ --save-dir /path_to_data/ --task translation --source-lang input --target-lang label --batch-size 128 --arch transformer --optimizer adam --lr 5e-4 --lr-scheduler inverse_sqrt --fp16 --adam-betas '(0.9, 0.98)' --weight-decay 1.2e-6 --clip-norm 1. --dropout 0.3 --save-interval 50 --max-epoch 500

    • Train LSTM python train.py data-orchard-mmc --save-dir data-orchard-mmc --task translation --arch lstm --source-lang input --target-lang label --batch-size 128 --save-interval 100 --max-epoch 500 --lr 5e-3 --fp16

  3. Generate predictions

    • Test model on depth of tree 7 python generate.py /path_to_data/test7 --path /path_to_data/checkpoint500.pt --batch-size 32 --beam 5
Owner
Bill Pung
Data Scientist working on Artificial Intelligence. Happy to connect on LinkedIn: https://www.linkedin.com/in/billptw/
Bill Pung
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022