The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

Overview

https://github.com/unifyai/ivy/blob/master/docs/partial_source/logos/logo.png?raw=true



The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

Contents

Overview

What is Ivy?

Ivy is a unified machine learning framework which maximizes the portability of machine learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries and layers can then be written using Ivy, with simultaneous support for all frameworks. Ivy currently supports Jax, TensorFlow, PyTorch, MXNet and Numpy. Check out the docs for more info!

Ivy Libraries

There are a host of derived libraries written in Ivy, in the areas of mechanics, 3D vision, robotics, gym environments, neural memory, pre-trained models + implementations, and builder tools with trainers, data loaders and more. Click on the icons below to learn more!


Quick Start

Ivy can be installed like so: pip install ivy-core You can immediately use Ivy to train a neural network, using your favourite framework in the background, like so:

import ivy

class MyModel(ivy.Module):
    def __init__(self):
        self.linear0 = ivy.Linear(3, 64)
        self.linear1 = ivy.Linear(64, 1)
        ivy.Module.__init__(self)

    def _forward(self, x):
        x = ivy.relu(self.linear0(x))
        return ivy.sigmoid(self.linear1(x))

ivy.set_framework('torch')  # change to any framework!
model = MyModel()
optimizer = ivy.Adam(1e-4)
x_in = ivy.array([1., 2., 3.])
target = ivy.array([0.])

def loss_fn(v):
    out = model(x_in, v=v)
    return ivy.reduce_mean((out - target)**2)[0]

for step in range(100):
    loss, grads = ivy.execute_with_gradients(loss_fn, model.v)
    model.v = optimizer.step(model.v, grads)
    print('step {} loss {}'.format(step, ivy.to_numpy(loss).item()))

print('Finished training!')

This example uses PyTorch as a backend framework, but the backend can easily be changed to your favourite framework, such as TensorFlow, JAX or MXNet.

Framework Agnostic Functions

In the example below we show how Ivy's concatenation function is compatible with tensors from different frameworks. This is the same for ALL Ivy functions. They can accept tensors from any framework and return the correct result.

import jax.numpy as jnp
import tensorflow as tf
import numpy as np
import mxnet as mx
import torch

import ivy

jax_concatted = ivy.concatenate((jnp.ones((1,)), jnp.ones((1,))), -1)
tf_concatted = ivy.concatenate((tf.ones((1,)), tf.ones((1,))), -1)
np_concatted = ivy.concatenate((np.ones((1,)), np.ones((1,))), -1)
mx_concatted = ivy.concatenate((mx.nd.ones((1,)), mx.nd.ones((1,))), -1)
torch_concatted = ivy.concatenate((torch.ones((1,)), torch.ones((1,))), -1)

To see a list of all Ivy methods, type ivy. into a python command prompt and press tab. You should then see output like the following:

https://github.com/unifyai/ivy/blob/master/docs/partial_source/images/ivy_tab.png?raw=true

Based on this short code sample alone, you may wonder, why is this helpful? Don't most developers stick to just one framework for a project? This is indeed the case, and the benefit of Ivy is not the ability to combine different frameworks in a single project.

So what is the benefit of Ivy?

In a Nutshell

Ivy's strength arises when we want to maximize the usability of our code.

We can write a set of functions once in Ivy, and share these with the community so that all developers can use them, irrespective of their personal choice of framework. TensorFlow? PyTorch? Jax? With Ivy code it doesn't matter!

This makes it very simple to create highly portable machine learning codebases. The core idea behind Ivy is captured by the example of the ivy.clip function below.

https://github.com/unifyai/ivy/blob/master/docs/partial_source/images/a_unified_framework.png?raw=true

On it's own this may not seem very exciting, there are more interesting things to do in machine learning than clip tensors. Ivy is a building block for more interesting applications.

For example, the Ivy libraries for mechanics, 3D vision, robotics, and differentiable environments are all written in pure Ivy. These libraries provide fully differentiable implementations of various applied functions, primed for integration in end-to-end networks, for users of any machine-learning framework.

Another benefit of Ivy is user flexibility. By keeping the Ivy abstraction lightweight and fully functional, this keeps you in full control of your code. The schematic below emphasizes that you can choose to develop at any abstraction level.

https://github.com/unifyai/ivy/blob/master/docs/partial_source/images/abstraction_hierarchy.png?raw=true

You can code entirely in Ivy, or mainly in their native DL framework, with a small amount of Ivy code. This is entirely up to you, depending on how many Ivy functions you need from existing Ivy libraries, and how much new Ivy code you add into your own project, to maximize it's audience when sharing online.

Where Next?

So, now that you've got the gist of Ivy, and why it's useful. Where to next?

This depends on whether you see yourself in the short term as more likely to be an Ivy library user or an Ivy library contributor.

If you would like to use the existing set of Ivy libraries, dragging and dropping key functions into your own project, then we suggest you dive into some of the demos for the various Ivy libraries currently on offer. Simply open up the main docs, then open the library-specific docs linked on the bottom left, and check out the demos folder in the library repo.

On the other hand, if you have your own new library in mind, or if you would like to implement parts of your own project in Ivy to maximise its portability, then we recommend checking out the page Using Ivy in the docs. Here, we dive a bit deeper into the Ivy framework, and the best coding practices to get the most out of Ivy for your own codebases and libraries.

Citation

@article{lenton2021ivy,
  title={Ivy: Templated deep learning for inter-framework portability},
  author={Lenton, Daniel and Pardo, Fabio and Falck, Fabian and James, Stephen and Clark, Ronald},
  journal={arXiv preprint arXiv:2102.02886},
  year={2021}
}
Comments
  • Create numpy diagonal

    Create numpy diagonal

    diagonal #6616. Kindly mark a green circle on it. So there will be no conflict in the future. I already experienced that thing. https://github.com/unifyai/ivy/issues/6616.

    TensorFlow Frontend NumPy Frontend Array API Ivy Functional API 
    opened by hrak99 59
  • Add Statistical functions mean numpy frontend #2546

    Add Statistical functions mean numpy frontend #2546

    Greetings i think i did everything i did the frontend the tests as well and changed the init files i did the mean function according to the numpy documentation waiting for your reply. Best regards.

    opened by Emperor-WS 26
  • Isin extension

    Isin extension

    #5716

    added most backend implementations there is only problem with tensorflow I'm still trying to solve since it doesnt have the function isin, once I'm able to do that I will add tests

    Array API Function Reformatting Ivy Functional API Ivy API Experimental 
    opened by pillarxyz 20
  • reformat shape_to_tuple

    reformat shape_to_tuple

    Hi, I've got a question on testings. I was getting errors, so I checked the logs and I found out that some of those tests aren't ready yet (e.g.: shape_to_tuple). Not sure if I'm right, but it'll be awesome if you give some information about this. Thank you.

    opened by mcandemir 19
  • feat: add is_tensor to tensorflow frontend general functions

    feat: add is_tensor to tensorflow frontend general functions

    Close #7584 Need help with PyTest, I am unable to wrap my head around the testing helpers yet.

    Essentially, when I run these tests, I get the same error, despite trying various combinations of the parameters passed to the test_frontend_function

    TensorFlow Frontend 
    opened by chtnnh 18
  • argmax function: general.py

    argmax function: general.py

    Test Cases:

    • 42 passed for pytest ./ivy/ivy_tests/test_functional/test_core/test_general.py::test_argmax --disable-warnings -rs
    • 6 skipped for conftest.py
    • No errors

    Implemented for

    • [x] jax
    • [x] numpy
    • [x] mxnet
    • [x] tensorflow
    • [x] torch
    Array API Single Function 
    opened by 7wikd 18
  • reformatting task coding challenge

    reformatting task coding challenge

    Please consider this my PR for the task 'vairable_data' in the 'gradients' submodule. The task number #9283 and the ToDo list is #776

    https://github.com/unifyai/ivy/issues/9283

    Array API Ivy Functional API 
    opened by waheeduddin 0
Releases(v1.1.9)
  • v1.1.5(Jul 26, 2021)

    Version 1.1.5.

    Added some new methods and classes, improved the ivy.Module and ivy.Container classes. ivy.Container now overrides more built-in methods, and has more flexible nested methods such as gather_nd, repeat, stop_gradients etc.

    This version was tested against: JAX 0.2.17 JAXLib 0.1.69 TensorFlow 2.5.0 TensorFlow Addons 0.13.0 TensorFlow Probability 0.13.0 PyTorch 1.9.0 MXNet 1.8.0 NumPy 1.19.5

    However, Ivy 1.1.5 inevitably supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.4(Apr 12, 2021)

    Version 1.1.4.

    Added some new methods, fixed some small bugs, improved unit testing, and tested against the latest backend versions.

    This version was tested against: JAX 0.2.12 TensorFlow 2.4.1 PyTorch 1.8.1 MXNet 1.8.0 NumPy 1.20.2

    However, Ivy 1.1.4 inevitably supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.3(Mar 19, 2021)

    Version 1.1.3.

    Added some new methods, fixed some small bugs, improved unit testing, and tested against the latest backend versions.

    This version was tested against: JAX 0.2.10 TensorFlow 2.4.1 PyTorch 1.8.0 MXNet 1.7.0 NumPy 1.19.5

    However, Ivy 1.1.3 likely supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.2(Feb 27, 2021)

    Version 1.1.2.

    Added adam update, changed gradient methdos to operate on gradient dicts instead of lists, added new container chain chain method, among other small changes.

    This version was tested against: JAX 0.2.9 TensorFlow 2.4.1 PyTorch 1.7.1 MXNet 1.7.0 NumPy 1.19.5

    However, Ivy 1.1.2 likely supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.1(Feb 10, 2021)

Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API.

7.4k Jan 04, 2023
A python library for Bayesian time series modeling

PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W

Sam 438 Dec 17, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022