ML Kaggle Titanic Problem using LogisticRegrission

Overview

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission

here you will find the solution for the titanic problem on kaggle with comments and step by step coding



Problem Overview

The sinking of the Titanic is one of the most infamous shipwrecks in history.

On April 15, 1912, during her maiden voyage, the widely considered “unsinkable” RMS Titanic sank after colliding with an iceberg. Unfortunately, there weren’t enough lifeboats for everyone onboard, resulting in the death of 1502 out of 2224 passengers and crew.

While there was some element of luck involved in surviving, it seems some groups of people were more likely to survive than others.

In this challenge, we ask you to build a predictive model that answers the question: “what sorts of people were more likely to survive?” using passenger data (ie name, age, gender, socio-economic class, etc).


Table of Contents
  1. Analuze and visilaze the Dataset
  2. Clean and prepare the dataset for our ML model
  3. Build & Train Our Model
  4. Caluclate the Accuracy for the model
  5. Prepare the submission file to submit it to kaggle

Load & Analyze Our Dataset

  • First we read the data from the csv files
    data_train = pd.read_csv('titanic/train.csv')
    data_test = pd.read_csv('titanic/test.csv')

visilyze the given data

   print(data_train.head())
PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked
0            1         0       3  ...   7.2500   NaN         S
1            2         1       1  ...  71.2833   C85         C
2            3         1       3  ...   7.9250   NaN         S
3            4         1       1  ...  53.1000  C123         S
4            5         0       3  ...   8.0500   NaN         S   

## Note ```sh The Survived column is what we’re trying to predict. We call this column the (target) and remaining columns are called (features) ```
### count the number of the Survived and the deaths ```py data_train['Survived'].value_counts() # (342 Survived) | (549 not survived) ```

plot the amount of the survived and the deaths

plt.figure(figsize=(5, 5))
plt.bar(list(data_train['Survived'].value_counts().keys()), (list(data_train['Survived'].value_counts())),
     color=['r', 'g'])

analyze the age

plt.figure(figsize=(5, 7))
plt.hist(data_train['Age'], color='Purple')
plt.title('Age Distribuation')
plt.xlabel('Age')
plt.show()


Note: Now after we made some analyze here and their, it's time to clean up our data If you take a look to the avalible columns we you may noticed that some columns are useless so they may affect on our model performance.

Here we make our cleaning function

   def clean(data):
    # here we drop the unwanted data
    data = data.drop(['Ticket', 'Cabin', 'Name'], axis=1)
    cols = ['SibSp', 'Parch', 'Fare', 'Age']

    # Fill the Null Values with the mean value
    for col in cols:
        data[col].fillna(data[col].mean(), inplace=True)

    # fill the Embarked null values with an unknown data
    data.Embarked.fillna('U', inplace=True)
    return data

# now we call our function and start cleaning!

data_train = clean(data_train)
data_test = clean(data_test)

## Note: now we need to change the sex feature into a numeric value like [1] for male and [0] female and also for the Embarked feature

Here we used preprocessing method in sklearn to do this job

le = preprocessing.LabelEncoder()
cols = ['Sex', 'Embarked'].predic
for col in cols:
    data_train[col] = le.fit_transform(data_train[col])
    data_test[col] = le.fit_transform(data_test[col])

## now our data is ready! it's time to build our model

we select the target column ['Survived'] to store it in [Y] and drop it from the original data

y = data_train['Survived']
x = data_train.drop('Survived', axis=1)

Here split our data

x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.02, random_state=10)

Init the model

model = LogisticRegression(random_state=0, max_iter=10000)

train our model

model.fit(x_train, y_train)
predictions = model.predict(x_val)

## Great !!! our model is now finished and ready to use

It's time to check the accuracy for our model

print('Accuracy=', accuracy_score(y_val, predictions))

Output:

Accuracy=0.97777

Now we submit our model to kaggle

test = pd.read_csv('titanic/test.csv')
df = pd.DataFrame({'PassengerId': test['PassengerId'].values, 'Survived': submit_pred})
df.to_csv('submit_this_file.csv', index=False)
Owner
Mahmoud Nasser Abdulhamed
Mahmoud Nasser Abdulhamed
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and motion planning

pybullet-planning (previously ss-pybullet) A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and

Caelan Garrett 260 Dec 27, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 07, 2023
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022