EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)

Overview

EAST_ICPR2018: EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)

Introduction

This is a repository forked from argman/EAST for the ICPR MTWI 2018 Challenge II.
Origin Repository: argman/EAST - EAST: An Efficient and Accurate Scene Text Detector. It is a tensorflow re-implementation of EAST: An Efficient and Accurate Scene Text Detector.
Origin Author: argman

This repository also refers to HaozhengLi/EAST_ICPR
Origin Repository: HaozhengLi/EAST_ICPR.
Origin Author: HaozhengLi.

Author: Qichao Wu
Email: [email protected] or [email protected]

Contents

  1. Dataset and Transform
  2. Models
  3. Demo
  4. Train
  5. Test
  6. Results

Dataset and Transform

the dataset for model training include ICDAR 2017 MLT (train + val), RCTW-17 (train) and ICPR MTWI 2018. Among them, ICPR MTWI 2018 include 9000 train data <ICPR_text_train_part2_20180313> and 1000 validate data <(update)ICPR_text_train_part1_20180316>.

Some data in the dataset is abnormal for argman/EAST, just like ICPR_text_train_part2_20180313 or (update)ICPR_text_train_part1_20180316. Abnormal means that the ground true labels are anticlockwise, or the images are not in 3 channels. Then errors like 'poly in wrong direction' will occur while using argman/EAST.

Images and ground true labels files must be renamed as <img_1>, <img_2>, ..., <img_xxx> and <txt_1>, <txt_2>, ..., <txt_xxx> while using argman/EAST to train or test Because Names of the images and txt in ICPR MTWI 2018 are abnormal. Like <T1cMkaFMFcXXXXXXXX_!!0-item_pic.jpg> but not <img_***.jpg>. Then errors will occur while using argman/EAST#test.

So I wrote a python program to check and transform the dataset. The program named <getTxt.py> is in the folder 'script/' and its parameters are descripted as bellow:

#input
gt_text_dir="./txt_9000"                   #original ground true labels 
image_dir = "./image_9000/*.jpg"           #original image which must be in 3 channels(Assume that the picture is in jpg format. If the picture is in another format, please change the suffix of the picture.
#output
revised_text_dir = "./trainData"           #Rename txt for EAST and make the coordinate of detected text block in txt clockwise
imgs_save_dir = "./trainData"              #Rename image for EAST 

Before you run getTxt.py to transform the dataset for argman/EAST, you should make sure that the original images are all in 3 channels. I write a cpp file to selete the abnormal picture(not in 3 channels) from the dataset. The program named <change_three_channels.cpp> is in the folder 'script/' and its parameters are descripted as bellow:

string dir_path = "./image_9000/";             //original images which include abnomral images
string output_path = "./output/";              //abnormal images which is in three channels 

When you get the output abnormal images from getTxt.py, please transform them to normal ones through other tools like Format Factory (e.g. Cast to jpg format in Format Factory)

I have changed ICPR MTWI 2018 for EAST. Their names are ICPR2018_training which include 9000 train images+txt and ICPR2018_validation which include 1000 validate images+txt.
I have also changed ICDAR 2017 MLT (train + val) for EAST. Their names are ICDAR2017_training which include 1600 train images+txt and ICDAR2017_validation which include 400 images+txt.
I have changed RCTW-17 (train) but it's too large to upload so maybe you change yourself.

Models

  1. Use ICPR2018_training and 0.0001 learning rate to train Resnet_V1_50 model which is pretrained by ICDAR 2013 (train) + ICDAR 2015 (train). The pretrained model is provided by argman/EAST, it is trainde by 50k iteration.
    The 100k iteration model is 50net-100k, 270k iteration model is 50net-270k, 900k iteraion model is 50net-900k
  2. Use ICPR2018_training, ICDAR2017_training, ICDAR2017_validation, RCTW-17 (train) and 0.0001 learing rate to train Resnet_V1_101 model. The pretrainede model is slim_resnet_v1_101 provided by tensorflow slim.
    The 230k iteration model is 101net-mix-230k
  3. Use ICPR2018_training, ICDAR2017_training, ICDAR2017_validation, RCTW-17 (train) and 0.001 learing rate to train Resnet_V1_101 model. The pretrainede model is 101net-mix-230k.
    The 330k iteration model is 101net-mix-10*lr-330k
  4. Use ICPR2018_training and 0.0001 learing rate to train Resnet_V1_101 model. The pretrainede model is mix-10lr-330k.
    The 460k iteration model is 101net-460k
  5. Use ICPR2018_training and 0.0001 learing rate to train Resnet_V1_101 model. The pretrainede model is 101net-mix-230k.
    The 300k iteration model is 101net-300k, 400k iteration model is 101net-400k, 500k iteration model is 101net-500k, 550k iteraion model is 101net-550k
  6. Use ICPR2018_training and 0.0001 learing rate with data argument to train Resnet_V1_101 model. The pretrainede model is 101net-550k.
    The 700k iteration model is 101net-arg-700k, 1000k iteration model is 101net-arg-1000k

Demo

Download the pre-trained models and run:

python run_demo_server.py --checkpoint-path models/east_icpr2018_resnet_v1_50_rbox_100k/

Then Open http://localhost:8769 for the web demo server, or get the results in 'static/results/'.
Note: See argman/EAST#demo for more details.

Train

Prepare the training set and run:

python multigpu_train.py --gpu_list=0 --input_size=512 --batch_size_per_gpu=14 --checkpoint_path=/tmp/east_icdar2015_resnet_v1_50_rbox/ \
--text_scale=512 --training_data_path=/data/ocr/icdar2015/ --geometry=RBOX --learning_rate=0.0001 --num_readers=24 \
--pretrained_model_path=/tmp/resnet_v1_50.ckpt

Note 1: Images and ground true labels files must be renamed as <img_1>, <img_2>, ..., <img_xxx> while using argman/EAST. Please see the examples in the folder 'training_samples/'.
Note 2: If --restore=True, training will restore from checkpoint and ignore the --pretrained_model_path. If --restore=False, training will delete checkpoint and initialize with the --pretrained_model_path (if exists).
Note 3: If you want to change the learning rate during training, your setting learning rate in the command line is equal to the learning rate which you want to set in current step divided by the learning rate in current step times original learing rate setted in the command line
Note 4: See argman/EAST#train for more details.

when you use Resnet_V1_101 model, you should modify three parts of code in argman/EAST. 1.model.py

with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)):
    # logits, end_points = resnet_v1.resnet_v1_50(images, is_training=is_training, scope='resnet_v1_50')
    logits, end_points = resnet_v1.resnet_v1_101(images, is_training=is_training, scope='resnet_v1_101')

2.nets/resnet_v1.py

if __name__ == '__main__':
    input = tf.placeholder(tf.float32, shape=(None, 224, 224, 3), name='input')
    with slim.arg_scope(resnet_arg_scope()) as sc:
        # logits = resnet_v1_50(input)
        logits = resnet_v1_101(input)

3.nets/resnet_v1.py

try:
    # end_points['pool3'] = end_points['resnet_v1_50/block1']
    # end_points['pool4'] = end_points['resnet_v1_50/block2']
    end_points['pool3'] = end_points['resnet_v1_101/block1']
    end_points['pool4'] = end_points['resnet_v1_101/block2']
except:
    #end_points['pool3'] = end_points['Detection/resnet_v1_50/block1']
    #end_points['pool4'] = end_points['Detection/resnet_v1_50/block2']
    end_points['pool3'] = end_points['Detection/resnet_v1_101/block1']
    end_points['pool4'] = end_points['Detection/resnet_v1_101/block2']

when you use data argument, you should add two parts of code argman/EAST.

1.nets/resnet_v1.py

#add before resnet_v1 function
def gaussian_noise_layer(input_layer, std):
    noise = tf.random_normal(shape=tf.shape(input_layer), mean=0.0, stddev=std, dtype=tf.float32)
    return input_layer + noise/250

2.nets/resnet_v1.py

with slim.arg_scope([slim.batch_norm], is_training=is_training):
	inputs=gaussian_noise_layer(inputs,1)								#add gaussian noise data argument
	inputs=tf.image.random_brightness(inputs,32./255)                   #add brightness data argument
	inputs=tf.image.random_contrast(inputs,lower=0.5,upper=1.5)         #add contrast data argument
	net = inputs

Test

when you use argman/EAST for testing, Names of the images in ICPR MTWI 2018 are abnormal. Like <T1cMkaFMFcXXXXXXXX_!!0-item_pic.jpg> but not <img_***.jpg>. Then errors will occur while using argman/EAST#test.
So I wrote a python programs to rename and inversely rename the dataset. Before evaluating, run the program named <changeImageName.py> to make names of the images normal. This program is in the folder 'script/' and its parameters are descripted as bellow:

#input
image_dir = "./image_test/*.jpg"                         #orignial images name(perhaps abnormal e.g <T1cMkaFMFcXXXXXXXX_!!0-item_pic.jpg>)
#output
imgs_save_dir = "./image_test_change"                    #renamed images(e.g. <img_1.jpg>)

After evaluating, the output file folder contain images with bounding boxes and txt. If I want to get the original name of txt, we should delete the images in the output file folder and inversely rename the txt.
So I wrote two python programs to get the original name of txt. First, run the program named <deleteImage.py> to delete the images in folder. This program is in the folder 'script/' and its parameters are descripted as bellow:

#input 
output_dir = "./output/"        #original output file folder(txt and images)
#output 
output_dir = "./output/"        #processed output file folder(only txt)

Second, run the program named <rechangeTxtName.py> to inversely rename the txt in output folder. This program is in the folder 'script/' and its parameters are descripted as bellow:

#input
image_dir = "./image_test/*.jpg"     #original images  
gt_text_dir = "./txt_test"           #the folder which contain renamed txt e.g. <txt_1>
#output
gt_text_dir = "./txt_test"           #the folder which contain inversely renamed txt e.g. <T1cMkaFMFcXXXXXXXX_!!0-item_pic.jpg> but not <img_1.jpg>

If you want to see the output result on the image, you can draw the output bounding boxes on the origanl image.
So I wrote a python programs to read picture and txt coompatibel with Chinese, then draw and save images with output bounding boxes. This program named <check.py> is in the folder 'script/' and its parameters are descripted as bellow: #input gt_text_dir = "./txt_test" #output labels(bounding boxes) folder image_dir = "./image_test/*.jpg" #original images folder #output imgs_save_dir = "./processImageTest" #where to save the images with output bounding boxes. This program is in the folder 'script/' and its parameters are descripted as bellow:

I wrote a python programs to evaluate the output performance. The program named <getACC.py> is in the folder 'script/' and its parameters are descripted as bellow:

#input
gt_text_dir = "./traintxt9000/"      # ground truth directory
#output
test_text_dir = "./output/"          # output directory 

Finally, If you want to compress the output txt in order to submit, you can run the command 'zip -r sample_task2.zip sample_task2' to get the .zip file

Results

Here are some results on ICPR MTWI 2018:






Hope this helps you

Owner
QichaoWu
machine learning,deep learning
QichaoWu
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

188 Dec 28, 2022
Controlling the computer volume with your hands // OpenCV

HandsControll-AI Controlling the computer volume with your hands // OpenCV Step 1 git clone https://github.com/Hayk-21/HandsControll-AI.git pip instal

Hayk 1 Nov 04, 2021
Using computer vision method to recognize and calcutate the features of the architecture.

building-feature-recognition In this repository, we accomplished building feature recognition using traditional/dl-assisted computer vision method. Th

4 Aug 11, 2022
Turn images of tables into CSV data. Detect tables from images and run OCR on the cells.

Table of Contents Overview Requirements Demo Modules Overview This python package contains modules to help with finding and extracting tabular data fr

Eric Ihli 311 Dec 24, 2022
Super Mario Game With Python

Super_Mario Hello all this is a simple python program which tries to use our body as a controller for the super mario game Here I have used media pipe

Adarsh Badagala 219 Nov 25, 2022
Multi-choice answer sheet correction system using computer vision with opencv & python.

Multi choice answer correction 🔴 5 answer sheet samples with a specific solution for detecting answers and sheet correction. 🔴 By running the soluti

Reza Firouzi 7 Mar 07, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
color detection using python

colordetection color detection using python In this color detection Python project, we are going to build an application through which you can automat

Ruchith Kumar 1 Nov 04, 2021
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Jan 05, 2023
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
[python3.6] 运用tf实现自然场景文字检测,keras/pytorch实现ctpn+crnn+ctc实现不定长场景文字OCR识别

本文基于tensorflow、keras/pytorch实现对自然场景的文字检测及端到端的OCR中文文字识别 update20190706 为解决本项目中对数学公式预测的准确性,做了其他的改进和尝试,效果还不错,https://github.com/xiaofengShi/Image2Katex 希

xiaofeng 2.7k Dec 25, 2022
A pkg stiching around view images(4-6cameras) to generate bird's eye view.

AVP-BEV-OPEN Please check our new work AVP_SLAM_SIM A pkg stiching around view images(4-6cameras) to generate bird's eye view! View Demo · Report Bug

Xinliang Zhong 37 Dec 01, 2022
Random maze generator and solver

Maze Generator and Solver I wrote a maze generator that works with two commonly known algorithms: Depth First Search and Randomized Prims. Both of the

Daniel Pérez 10 Sep 23, 2022
Morphological edge detection or object's boundary detection using erosion and dialation in OpenCV python

Morphologycal-edge-detection-using-erosion-and-dialation the task is to detect object boundary using erosion or dialation . Here, use the kernel or st

Tamzid hasan 3 Nov 25, 2022
Awesome anomaly detection in medical images

A curated list of awesome anomaly detection works in medical imaging, inspired by the other awesome-* initiatives.

Kang Zhou 57 Dec 19, 2022
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
Text layer for bio-image annotation.

napari-text-layer Napari text layer for bio-image annotation. Installation You can install using pip: pip install napari-text-layer Keybindings and m

6 Sep 29, 2022
PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV)

About PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV) Colorizor Приложение для проекта Yand

1 Apr 04, 2022