EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)

Overview

EAST_ICPR2018: EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)

Introduction

This is a repository forked from argman/EAST for the ICPR MTWI 2018 Challenge II.
Origin Repository: argman/EAST - EAST: An Efficient and Accurate Scene Text Detector. It is a tensorflow re-implementation of EAST: An Efficient and Accurate Scene Text Detector.
Origin Author: argman

This repository also refers to HaozhengLi/EAST_ICPR
Origin Repository: HaozhengLi/EAST_ICPR.
Origin Author: HaozhengLi.

Author: Qichao Wu
Email: [email protected] or [email protected]

Contents

  1. Dataset and Transform
  2. Models
  3. Demo
  4. Train
  5. Test
  6. Results

Dataset and Transform

the dataset for model training include ICDAR 2017 MLT (train + val), RCTW-17 (train) and ICPR MTWI 2018. Among them, ICPR MTWI 2018 include 9000 train data <ICPR_text_train_part2_20180313> and 1000 validate data <(update)ICPR_text_train_part1_20180316>.

Some data in the dataset is abnormal for argman/EAST, just like ICPR_text_train_part2_20180313 or (update)ICPR_text_train_part1_20180316. Abnormal means that the ground true labels are anticlockwise, or the images are not in 3 channels. Then errors like 'poly in wrong direction' will occur while using argman/EAST.

Images and ground true labels files must be renamed as <img_1>, <img_2>, ..., <img_xxx> and <txt_1>, <txt_2>, ..., <txt_xxx> while using argman/EAST to train or test Because Names of the images and txt in ICPR MTWI 2018 are abnormal. Like <T1cMkaFMFcXXXXXXXX_!!0-item_pic.jpg> but not <img_***.jpg>. Then errors will occur while using argman/EAST#test.

So I wrote a python program to check and transform the dataset. The program named <getTxt.py> is in the folder 'script/' and its parameters are descripted as bellow:

#input
gt_text_dir="./txt_9000"                   #original ground true labels 
image_dir = "./image_9000/*.jpg"           #original image which must be in 3 channels(Assume that the picture is in jpg format. If the picture is in another format, please change the suffix of the picture.
#output
revised_text_dir = "./trainData"           #Rename txt for EAST and make the coordinate of detected text block in txt clockwise
imgs_save_dir = "./trainData"              #Rename image for EAST 

Before you run getTxt.py to transform the dataset for argman/EAST, you should make sure that the original images are all in 3 channels. I write a cpp file to selete the abnormal picture(not in 3 channels) from the dataset. The program named <change_three_channels.cpp> is in the folder 'script/' and its parameters are descripted as bellow:

string dir_path = "./image_9000/";             //original images which include abnomral images
string output_path = "./output/";              //abnormal images which is in three channels 

When you get the output abnormal images from getTxt.py, please transform them to normal ones through other tools like Format Factory (e.g. Cast to jpg format in Format Factory)

I have changed ICPR MTWI 2018 for EAST. Their names are ICPR2018_training which include 9000 train images+txt and ICPR2018_validation which include 1000 validate images+txt.
I have also changed ICDAR 2017 MLT (train + val) for EAST. Their names are ICDAR2017_training which include 1600 train images+txt and ICDAR2017_validation which include 400 images+txt.
I have changed RCTW-17 (train) but it's too large to upload so maybe you change yourself.

Models

  1. Use ICPR2018_training and 0.0001 learning rate to train Resnet_V1_50 model which is pretrained by ICDAR 2013 (train) + ICDAR 2015 (train). The pretrained model is provided by argman/EAST, it is trainde by 50k iteration.
    The 100k iteration model is 50net-100k, 270k iteration model is 50net-270k, 900k iteraion model is 50net-900k
  2. Use ICPR2018_training, ICDAR2017_training, ICDAR2017_validation, RCTW-17 (train) and 0.0001 learing rate to train Resnet_V1_101 model. The pretrainede model is slim_resnet_v1_101 provided by tensorflow slim.
    The 230k iteration model is 101net-mix-230k
  3. Use ICPR2018_training, ICDAR2017_training, ICDAR2017_validation, RCTW-17 (train) and 0.001 learing rate to train Resnet_V1_101 model. The pretrainede model is 101net-mix-230k.
    The 330k iteration model is 101net-mix-10*lr-330k
  4. Use ICPR2018_training and 0.0001 learing rate to train Resnet_V1_101 model. The pretrainede model is mix-10lr-330k.
    The 460k iteration model is 101net-460k
  5. Use ICPR2018_training and 0.0001 learing rate to train Resnet_V1_101 model. The pretrainede model is 101net-mix-230k.
    The 300k iteration model is 101net-300k, 400k iteration model is 101net-400k, 500k iteration model is 101net-500k, 550k iteraion model is 101net-550k
  6. Use ICPR2018_training and 0.0001 learing rate with data argument to train Resnet_V1_101 model. The pretrainede model is 101net-550k.
    The 700k iteration model is 101net-arg-700k, 1000k iteration model is 101net-arg-1000k

Demo

Download the pre-trained models and run:

python run_demo_server.py --checkpoint-path models/east_icpr2018_resnet_v1_50_rbox_100k/

Then Open http://localhost:8769 for the web demo server, or get the results in 'static/results/'.
Note: See argman/EAST#demo for more details.

Train

Prepare the training set and run:

python multigpu_train.py --gpu_list=0 --input_size=512 --batch_size_per_gpu=14 --checkpoint_path=/tmp/east_icdar2015_resnet_v1_50_rbox/ \
--text_scale=512 --training_data_path=/data/ocr/icdar2015/ --geometry=RBOX --learning_rate=0.0001 --num_readers=24 \
--pretrained_model_path=/tmp/resnet_v1_50.ckpt

Note 1: Images and ground true labels files must be renamed as <img_1>, <img_2>, ..., <img_xxx> while using argman/EAST. Please see the examples in the folder 'training_samples/'.
Note 2: If --restore=True, training will restore from checkpoint and ignore the --pretrained_model_path. If --restore=False, training will delete checkpoint and initialize with the --pretrained_model_path (if exists).
Note 3: If you want to change the learning rate during training, your setting learning rate in the command line is equal to the learning rate which you want to set in current step divided by the learning rate in current step times original learing rate setted in the command line
Note 4: See argman/EAST#train for more details.

when you use Resnet_V1_101 model, you should modify three parts of code in argman/EAST. 1.model.py

with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)):
    # logits, end_points = resnet_v1.resnet_v1_50(images, is_training=is_training, scope='resnet_v1_50')
    logits, end_points = resnet_v1.resnet_v1_101(images, is_training=is_training, scope='resnet_v1_101')

2.nets/resnet_v1.py

if __name__ == '__main__':
    input = tf.placeholder(tf.float32, shape=(None, 224, 224, 3), name='input')
    with slim.arg_scope(resnet_arg_scope()) as sc:
        # logits = resnet_v1_50(input)
        logits = resnet_v1_101(input)

3.nets/resnet_v1.py

try:
    # end_points['pool3'] = end_points['resnet_v1_50/block1']
    # end_points['pool4'] = end_points['resnet_v1_50/block2']
    end_points['pool3'] = end_points['resnet_v1_101/block1']
    end_points['pool4'] = end_points['resnet_v1_101/block2']
except:
    #end_points['pool3'] = end_points['Detection/resnet_v1_50/block1']
    #end_points['pool4'] = end_points['Detection/resnet_v1_50/block2']
    end_points['pool3'] = end_points['Detection/resnet_v1_101/block1']
    end_points['pool4'] = end_points['Detection/resnet_v1_101/block2']

when you use data argument, you should add two parts of code argman/EAST.

1.nets/resnet_v1.py

#add before resnet_v1 function
def gaussian_noise_layer(input_layer, std):
    noise = tf.random_normal(shape=tf.shape(input_layer), mean=0.0, stddev=std, dtype=tf.float32)
    return input_layer + noise/250

2.nets/resnet_v1.py

with slim.arg_scope([slim.batch_norm], is_training=is_training):
	inputs=gaussian_noise_layer(inputs,1)								#add gaussian noise data argument
	inputs=tf.image.random_brightness(inputs,32./255)                   #add brightness data argument
	inputs=tf.image.random_contrast(inputs,lower=0.5,upper=1.5)         #add contrast data argument
	net = inputs

Test

when you use argman/EAST for testing, Names of the images in ICPR MTWI 2018 are abnormal. Like <T1cMkaFMFcXXXXXXXX_!!0-item_pic.jpg> but not <img_***.jpg>. Then errors will occur while using argman/EAST#test.
So I wrote a python programs to rename and inversely rename the dataset. Before evaluating, run the program named <changeImageName.py> to make names of the images normal. This program is in the folder 'script/' and its parameters are descripted as bellow:

#input
image_dir = "./image_test/*.jpg"                         #orignial images name(perhaps abnormal e.g <T1cMkaFMFcXXXXXXXX_!!0-item_pic.jpg>)
#output
imgs_save_dir = "./image_test_change"                    #renamed images(e.g. <img_1.jpg>)

After evaluating, the output file folder contain images with bounding boxes and txt. If I want to get the original name of txt, we should delete the images in the output file folder and inversely rename the txt.
So I wrote two python programs to get the original name of txt. First, run the program named <deleteImage.py> to delete the images in folder. This program is in the folder 'script/' and its parameters are descripted as bellow:

#input 
output_dir = "./output/"        #original output file folder(txt and images)
#output 
output_dir = "./output/"        #processed output file folder(only txt)

Second, run the program named <rechangeTxtName.py> to inversely rename the txt in output folder. This program is in the folder 'script/' and its parameters are descripted as bellow:

#input
image_dir = "./image_test/*.jpg"     #original images  
gt_text_dir = "./txt_test"           #the folder which contain renamed txt e.g. <txt_1>
#output
gt_text_dir = "./txt_test"           #the folder which contain inversely renamed txt e.g. <T1cMkaFMFcXXXXXXXX_!!0-item_pic.jpg> but not <img_1.jpg>

If you want to see the output result on the image, you can draw the output bounding boxes on the origanl image.
So I wrote a python programs to read picture and txt coompatibel with Chinese, then draw and save images with output bounding boxes. This program named <check.py> is in the folder 'script/' and its parameters are descripted as bellow: #input gt_text_dir = "./txt_test" #output labels(bounding boxes) folder image_dir = "./image_test/*.jpg" #original images folder #output imgs_save_dir = "./processImageTest" #where to save the images with output bounding boxes. This program is in the folder 'script/' and its parameters are descripted as bellow:

I wrote a python programs to evaluate the output performance. The program named <getACC.py> is in the folder 'script/' and its parameters are descripted as bellow:

#input
gt_text_dir = "./traintxt9000/"      # ground truth directory
#output
test_text_dir = "./output/"          # output directory 

Finally, If you want to compress the output txt in order to submit, you can run the command 'zip -r sample_task2.zip sample_task2' to get the .zip file

Results

Here are some results on ICPR MTWI 2018:






Hope this helps you

Owner
QichaoWu
machine learning,deep learning
QichaoWu
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
Hand gesture detection project with aweome UI implementation.

an awesome hand gesture detection project for you to be creative! Imagination is the limit to do with this project.

AR Ashraf 39 Sep 26, 2022
A set of workflows for corpus building through OCR, post-correction and normalisation

PICCL: Philosophical Integrator of Computational and Corpus Libraries PICCL offers a workflow for corpus building and builds on a variety of tools. Th

Language Machines 41 Dec 27, 2022
Page to PAGE Layout Analysis Tool

P2PaLA Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks. 💥 Try our new DEMO for online baseli

Lorenzo Quirós Díaz 180 Nov 24, 2022
learn how to use Gesture Control to change the volume of a computer

Volume-Control-using-gesture In this project we are going to learn how to use Gesture Control to change the volume of a computer. We first look into h

Diwas Pandey 49 Sep 22, 2022
([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Nested-Co-teaching ([email protected]) Pytorch implementation of paper "Boosting Co-tea

YINGYI CHEN 41 Jan 03, 2023
CVPR 2021 Oral paper "LED2-Net: Monocular 360Ëš Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360Ëš Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023
Basic functions manipulating images using the OpenCV library

OpenCV Basic functions manipulating images using the OpenCV library. Reading Ima

Shatha Siala 3 Feb 17, 2022
Detect handwritten words in a text-line (classic image processing method).

Word segmentation Implementation of scale space technique for word segmentation as proposed by R. Manmatha and N. Srimal. Even though the paper is fro

Harald Scheidl 190 Jan 03, 2023
A fastai/PyTorch package for unpaired image-to-image translation.

Unpaired image-to-image translation A fastai/PyTorch package for unpaired image-to-image translation currently with CycleGAN implementation. This is a

Tanishq Abraham 120 Dec 02, 2022
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 218 Dec 31, 2022
Repository for Scene Text Detection with Supervised Pyramid Context Network with tensorflow.

Scene-Text-Detection-with-SPCNET Unofficial repository for [Scene Text Detection with Supervised Pyramid Context Network][https://arxiv.org/abs/1811.0

121 Oct 15, 2021
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
An OCR evaluation tool

dinglehopper dinglehopper is an OCR evaluation tool and reads ALTO, PAGE and text files. It compares a ground truth (GT) document page with a OCR resu

QURATOR-SPK 40 Dec 20, 2022
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
Provides OCR (Optical Character Recognition) services through web applications

OCR4all As suggested by the name one of the main goals of OCR4all is to allow basically any given user to independently perform OCR on a wide variety

174 Dec 31, 2022
Convert PDF/Image to TXT using EasyOcr - the best OCR engine available!

PDFImage2TXT - DOWNLOAD INSTALLER HERE What can you do with it? Convert scanned PDFs to TXT. Convert scanned Documents to TXT. No coding required!! In

Hans Alemão 2 Feb 22, 2022
Automatically download multiple papers by keywords in CVPR

CVFPaperHelper Automatically download multiple papers by keywords in CVPR Install mkdir PapersToRead cd PaperToRead pip install requests tqdm git clon

46 Jun 08, 2022
Let's explore how we can extract text from forms

Form Segmentation Let's explore how we can extract text from any forms / scanned pages. Objectives The goal is to find an algorithm that can extract t

Philip Doxakis 42 Jun 05, 2022
Rest API Written In Python To Classify NSFW Images.

✨ NSFW Classifier API ✨ Rest API Written In Python To Classify NSFW Images. Fastest Solution If you don't want to selfhost it, there's already an inst

Akshay Rajput 23 Dec 30, 2022