CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

Related tags

Deep LearningDSL
Overview

Python >=3.8 PyTorch >=1.8.0 mmcv-full >=1.3.10

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection

DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detection (SSOD).

This code is established on mmdetection and is only used for research.

Instruction

Install dependencies

pytorch>=1.8.0
cuda 10.2
python>=3.8
mmcv-full 1.3.10

Download ImageNet pre-trained models

Download resnet50_rla_2283.pth (Google) resnet50_rla_2283.pth (Baidu, extract code: 5lf1) for later DSL training.

Training

For dynamically labeling the unlabeled images, original COCO dataset and VOC dataset will be converted to (DSL-style) datasets where annotations are saved in different json files and each image has its own annotation file. In addition, this implementation is slightly different from the original paper, where we clean the code, merge some data flow for speeding up training, add PatchShuffle also to the labeled images, and remove MetaNet for speeding up training as well, the final performance is similar as the original paper.

Clone this project & Create data root dir

cd ${project_root_dir}
git clone https://github.com/chenbinghui1/DSL.git
mkdir data
mkdir ori_data

#resulting format
#${project_root_dir}
#      - ori_data
#      - data
#      - DSL
#        - configs
#        - ...

For COCO Partially Labeled Data protocol

1. Download coco dataset and unzip it

mkdir ori_data/coco
cd ori_data/coco

wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/zips/unlabeled2017.zip

unzip annotations_trainval2017.zip -d .
unzip -q train2017.zip -d .
unzip -q val2017.zip -d .
unzip -q unlabeled2017.zip -d .

# resulting format
# ori_data/coco
#   - train2017
#     - xxx.jpg
#   - val2017
#     - xxx.jpg
#   - unlabled2017
#     - xxx.jpg
#   - annotations
#     - xxx.json
#     - ...

2. Convert coco to semicoco dataset

Use (tools/coco_convert2_semicoco_json.py) to generate the DSL-style coco data dir, i.e., semicoco/, which matches the code of unlabel training and pseudo-label update.

cd ${project_root_dir}/DSL
python3 tools/coco_convert2_semicoco_json.py --input ${project_root_dir}/ori_data/coco --output ${project_root_dir}/data/semicoco

You will obtain ${project_root_dir}/data/semicoco/ dir

3. Prepare partially labeled data

Use (data_list/coco_semi/prepare_dta.py) to generate the partially labeled data list_file. Now we take 10% labeled data as example

cd data_list/coco_semi/
python3 prepare_dta.py --percent 10 --root ${project_root_dir}/ori_data/coco --seed 2

You will obtain (data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}.json) (data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}-unlabel.json) (data_list/coco_semi/semi_supervised/instances_train2017.json) (data_list/coco_semi/semi_supervised/instances_val2017.json)

These above files are only used as image_list.

4. Train supervised baseline model

Train base model via (demo/model_train/baseline_coco.sh); configs are in dir (configs/fcos_semi/); Before running this script please change the corresponding file path in both script and config files.

cd ${project_root_dir}/DSL
./demo/model_train/baseline_coco.sh

5. Generate initial pseudo-labels for unlabeled images(1/2)

Generate the initial pseudo-labels for unlabeled images via (tools/inference_unlabeled_coco_data.sh): please change the corresponding list file path of unlabeled data in the config file, and the model path in tools/inference_unlabeled_coco_data.sh.

./tools/inference_unlabeled_coco_data.sh

Then you will obtain (workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json) which contains the pseudo-labels.

6. Generate initial pseudo-labels for unlabeled images(2/2)

Use (tools/generate_unlabel_annos_coco.py) to convert the produced (epoch_xxx.pth-unlabeled.bbox.json) above to DSL-style annotations

python3 tools/generate_unlabel_annos_coco.py \ 
          --input_path workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json \
          --input_list data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}-unlabeled.json \
          --cat_info ${project_root_dir}/data/semicoco/mmdet_category_info.json \
          --thres 0.1

You will obtain (workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json_thres0.1_annos/) dir which contains the DSL-style annotations.

7. DSL Training

Use (demo/model_train/unlabel_train.sh) to train our semi-supervised algorithm. Before training, please change the corresponding paths in config file and shell script.

./demo/model_train/unlabel_train.sh

For COCO Fully Labeled Data protocol

The overall steps are similar as steps in above Partially Labeled Data guaidline. The additional steps to do is to download and organize the new unlabeled data.

1. Organize the new images

Put all the jpg images into the generated DSL-style semicoco data dir like: semicoco/unlabel_images/full/xx.jpg;

cd ${project_root_dir}
cp ori_data/coco/unlabled2017/* data/semicoco/unlabel_images/full/

2. Download the corresponding files

Download (STAC_JSON.tar.gz) and unzip it; move (coco/annotations/instances_unlabeled2017.json) to (data_list/coco_semi/semi_supervised/) dir

cd ${project_root_dir}/ori_data
wget https://storage.cloud.google.com/gresearch/ssl_detection/STAC_JSON.tar
tar -xf STAC_JSON.tar.gz

# resulting files
# coco/annotations/instances_unlabeled2017.json
# coco/annotations/semi_supervised/instances_unlabeledtrainval20class.json
# voc/VOCdevkit/VOC2007/instances_diff_test.json
# voc/VOCdevkit/VOC2007/instances_diff_trainval.json
# voc/VOCdevkit/VOC2007/instances_test.json
# voc/VOCdevkit/VOC2007/instances_trainval.json
# voc/VOCdevkit/VOC2012/instances_diff_trainval.json
# voc/VOCdevkit/VOC2012/instances_trainval.json

cp coco/annotations/instances_unlabeled2017.json ${project_root_dir}/DSL/data_list/coco_semi/semi_supervised/

3. Train as steps4-steps7 which are used in Partially Labeled data protocol

Change the corresponding paths before training.

For VOC dataset

1. Download VOC data

Download VOC dataset to dir xx and unzip it, we will get (VOCdevkit/)

cd ${project_root_dir}/ori_data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_06-Nov-2007.tar
tar -xf VOCtest_06-Nov-2007.tar
tar -xf VOCtrainval_11-May-2012.tar

# resulting format
# ori_data/
#   - VOCdevkit
#     - VOC2007
#       - Annotations
#       - JPEGImages
#       - ...
#     - VOC2012
#       - Annotations
#       - JPEGImages
#       - ...

2. Convert voc to semivoc dataset

Use (tools/voc_convert2_semivoc_json.py) to generate DSL-style voc data dir, i.e., semivoc/, which matches the code of unlabel training and pseudo-label update.

cd ${project_root_dir}/DSL
python3 tools/voc_convert2_semivoc_json.py --input ${project_root_dir}/ori_data/VOCdevkit --output ${project_root_dir}/data/semivoc

And then use (tools/dataset_converters/pascal_voc.py) to convert the original voc list file to coco style file for evaluating VOC performances under COCO 'bbox' metric.

python3 tools/dataset_converters/pascal_voc.py ${project_root_dir}/ori_data/VOCdevkit -o data_list/voc_semi/ --out-format coco

You will obtain the list files in COCO-Style in dir: data_list/voc_semi/. These files are only used as val files, please refer to (configs/fcos_semi/voc/xx.py)

3. Combine with coco20class images

Copy (instances_unlabeledtrainval20class.json) to (data_list/voc_semi/) dir; and then run script (data_list/voc_semi/combine_coco20class_voc12.py) to produce the additional unlabel set with coco20classes.

cp ${project_root_dir}/ori_data/coco/annotations/semi_supervised/instances_unlabeledtrainval20class.json data_list/voc_semi/
cd data_list/voc_semi
python3 data_list/voc_semi/combine_coco20class_voc12.py \
                --cocojson instances_unlabeledtrainval20class.json \
                --vocjson voc12_trainval.json \
                --cocoimage_path ${project_root_dir}/data/semicoco/images/full \
                --outtxt_path ${project_root_dir}/data/semivoc/unlabel_prepared_annos/Industry/ \
                --outimage_path ${project_root_dir}/data/semivoc/unlabel_images/full
cd ../..

You will obtain the corresponding list file(.json): (voc12_trainval_coco20class.json), and the corresponding coco20classes images will be copyed to (${project_root_dir}/data/semivoc/unlabeled_images/full/) and the list file(.txt) will also be generated at (${project_root_dir}/data/semivoc/unlabel_prepared_annos/Industry/voc12_trainval_coco20class.txt)

4. Train as steps4-steps7 which are used in Partially Labeled data protocol

Please change the corresponding paths before training, and refer to configs/fcos_semi/voc/xx.py.

Testing

Please refer to (tools/semi_dist_test.sh).

./tools/semi_dist_test.sh

Acknowledgement

Owner
Bhchen
Bhchen
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023